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Figure 1: Nasa James Webb telescope [90],
deep field image of galaxy cluster SMACS 0723,
located about 4 billion lightyear from earth.



"Did the Creator first take a course in tensor calculus,
before He invented the universe?"

This is one of the guiding thoughts behind this book: Are the fundamentals of the forces in
physics (notably gravity) really as complicated as currently thought? Or can we simplify these,
while still properly describing/predicting the known observables, such as gravitational light
bending?

We will attempt to create a self-consistent theory linking gravity to the other fundamental
forces, as we currently know them: strong & weak nuclear force and electro-magnetism. It will
start from various fundamental observations, translating these to mathematical language and
aims to find quantitative relations between the observables. In some cases full quantitative
results will be obtained. In other cases only qualitative indications can be given. The reader is
then encouraged to proceed with the, mathematical, evaluations and publish the results. These
will then be referenced (and/or included) in future versions of this book.

We hope this document will inspire the reader to further studies on the topics that are touched
upon in this book.

Madeira, May 25, 2025



Chapter 1. Prologue

“The task is not to see
what has never been
seen before,

but to think what

has never been

thought before,
about what you see
everyday.”

Erwin Schrodinger




2.1

Some history

The earliest mention of a force "at a distance’ is attributed to the magnetic force, as early as 5™
century BC, in both Greek and Chinese literature [67, page 281]. Newton created the concept of
a gravitational (vector) field by the end of 17" century AD. Following a series of experiments (by
Coulomb, Ampeére and others), Maxwelll defined the laws of electro-magnetism by the late 19"
century. Early 20! century, Einstein created the special relativity (including electro-magnetism)
and General Relativity (gravity) [53]. During the 20! century, nuclear physics progressed with
the advent of large particle accelerators, leading to the 'strong & weak’ nuclear force concepts.
For the description of the smallest (atomic [57] and nuclear [56, 74]) scale quantum mechanics
was conceived. The weak and electro-dynamical forces have a unified description: electroweak
interaction [93]. In 2017 it was found that gravitational waves travel with the speed of light [1].

A further force concept that has received attention is inertia. Its origins have been discussed by
Mach, Einstein and others but are still poorly understood [13, 69].

We can therefore recognize following forces in nature (see table 2.1 ):

force range macroscopic veloci
8 static force [r] ty
strong nuclear | nuclear / 2
weak nuclear | nuclear / 22
electro-dynamic | infinite 1/r? speed of light
gravity infinite 1/r? speed of light
inertia 2 / 2007

Table 2.1: Some properties of fundamental forces
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Action at a distance

The concepts of force have always attracted some controversy. Notably the "action at a distance
idea was thought to be bewildering, starting with Newton [81]. A concept of touching was
assumed to be necessary in order to transmit forces.

)

However, when evaluating 'touching’ on a microscopic scale, modern electron-microscopes
routinely reveal (see fig. 2.1 [6] ) that "touching’ only means that the electron clouds of the
‘touching’ objects start interacting. The touching’ action remains an ’action at a distance’, albeit
at nanometer scale.

Apparently, the 'action at a distance’ con-
cept for force interactions holds true at
all length scales. From the nanometer
range in atomic forces, to gravitational
interaction taking place at light-year dis-
tance scales. Therefore, in this book we
accept the 'action at a distance’ as a start-
ing point, and will express forces as vec-
tors.
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We first touch upon known foundations 455,38 8 8 L5 KA N AT ) 'O‘.;."’
of theoretical physics (electro-dynamics, n ;
standard model, quantum mechanics
and model of universe). We state
the most important elements of these
theories, which impact our new con-

cepts.

Then we proceed with the derivation of
gravity as an electro-dynamically induced
effect. Building on these new suggestions
for gravity, we aim to compute various test
results that are known from General Rela-
tivity (GR) [53, 65, 68, 69], such as gravita-
tional bending of light and Shapiro time
delay. To further test our suggestions, we study the atomic mass of various (low mass) isotopes.

Figure 2.1: action at a distance: nanometers!

Further we study inertia as a gravity induced effect, inspired by Sciama [37]. Then we pro-
ceed with orbit and gravitational wave analysis.

We end the book by touching upon some, as of yet not resolved, topics that need further
attention. The reader is invited to study these questions. The author will also continue his
pursuit for answers and publish (or even better: reference) these studies in future versions of
this book.
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3.2

Introduction

This book is based on known physics, such as theories on electro-dynamical forces, quantum-
mechanics and elementary particle physics. In this chapter we indicate the most important
concepts and guide the reader to available literature.

Special Relativity

Special Relativity originated early 20™ century [53,
pages 35-65] with the publications of Einstein. By
postulating the constancy of the velocity of light
in vacuum, he changed our concepts of space and
time, which lead to changes in velocity addition
(see §3.7), Doppler effects and the concept that in-
trinsic energy (E;j,,) and mass of an object (m,p;)
are interlinked, via the well known:

Eint = Mop; ¢* 3.1)

with ¢ representing the speed of light. This law was
deduced [53, page 56] based on a 2-quanta thought
experiment in which the 2 quanta are emitted in
opposite directions from a static box (see fig. 3.1).
When evaluating the energy content before and af- Figure 3.1: 2-Quanta thought experi-
ter the emission of the 2 quanta and demanding ment by Einstein [30].

constancy of energy, Eq. (3.1) is found.

The relativistic Doppler law gives the observed frequency (v) or wavelength of light, emit-
ted by a moving source (with velocity v, under an angle 6 (see fig. 7.3) as [53, pages 67-71], [65,
page 121], [69, page 109], [70, page 79] :

V1-(vy/c)?

Vobs = Voriginal 77 (vz/c)Cos[0] o2

Therefore, the observed frequency of light (and thus its energy, via E = hv, see §3.4.1) is directly
influenced by the movement state of the light emitting source, as visualized in fig. 3.2.
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Light color, as percieved Light color, as percieved
by non—moving observer 1 by non—moving observer

(a) Doppler for v/c=0.2 (b) Doppler for v/c=0.3

Figure 3.2: Doppler effect on light (color and wavelength) as function of location around a
moving source, emitting monochromatic light of 540 nm. The light color turns (infra-)red when
the source recedes from the observer at sufficient velocity.

Standard model

The study of nuclear phenomena has lead to the Standard Model [56, 74], which describes
neutrons and protons to consist of 3 (point-size) moving quarks, carrying parts of elementary
charge, as shown in fig. 3.3a. The 'up’ quarks carry +2/3 of elementary charge, whereas 'down’
quarks carry -1/3 of elementary charge.

Quantum mechanics

Quanta

The essence of quantum physics is the realization that energy is only transmitted in discrete
amounts: quanta. Planck found that the electro-magnetic properties of light and quantum
energy E are linked by frequency (v) and the Planck constant h = 6.63 x 10734 kg m?/ s) as:

E = hv (3.3)

Every quant of electro-magnetic radiation contains this amount of energy.

Quantum mechanics in atoms and nuclei

Quantum mechanical theory [57, pages 26, 130] prescribes that a contained particle has a finite
(kinetic) energy in its ground state, as shown in fig. 3.3b. This key result will be explicitely used
when identifying the key driving factors behind gravity, in chapter 4.

We need to determine ’'ball-park’ figures of the velocity of the quarks inside the neutron, and
use classical mechanical elements. The energy of the ground state [57, pages 26, 130] of a
quark moving inside a neutron (Ex;, = h? /(8 mgr2)) can expressed in relation to the relativistic
rest’-energy: mgc? and the velocity of the involved particle.

2
myc 2 2
—mpc” = mgpc

1
N |
V1-(v/c)? (\/1—(12/(3)2 )

/c 1 —1 1 —1
U = — = —
2 2
Ein I’l2
(#”) (8m—+1)

Exin = (3.4)




3.5

3.5 Electro-dynamical force 13

o E =h?/(8m r?)

o r—neutron
.\>
Proton Neutron ‘
Charge:
Up quark =+2/3 Neutron :+2/3-1/3 -1/3= 0
Down quark =-1/3 Proton :+2/3+2/3 -1/3 = +1
(b) Quantum ground state energy, as func-
(a) Proton and neutron, quark composition. tion of the dimension of the nucleus.

Figure 3.3: Moving quarks inside the nucleus.

Using following parameters [56, 57, 74] for the properties of quark and neutron (size:
rm=08x10"%m; m, =2.0MeV/c?=2.0x10°%1.6x10712/(3x10%)? kg =3.5x1073%kg.
From these values, we find:

Egin

5 = 75.000 = vic=1 (3.5)
mgC

In conclusion: the velocity of a quark inside a neutron is close to that of the speed of light.

As a side note: the dual-nature (particle-wave) of quantum mechanics, is partly shown in
the figure at the heading of this chapter: water can act both as a wave [rocking a boat] or as
individual droplets [making you wet]. It remains the same water. The difference (particle or
wave) is determined by the interaction with the object.

Electro-dynamical force

The electro-dynamical force concept originated from investigations by Coulomb on static elec-
trical forces. He found that a rotational symmetric charge creates a rotational symmetric force
field, with the static force reducing with distance (r) as 1/r?, see fig. 3.4a. The Gauss flux
law expresses mathematically that the number of mathematical Euclidean space dimensions
is 1 higher than the (negative) power of physical force reduction with distance (in spherical
symmetric forces). Therefore, it can be concluded (as done by I. Kant [17]) that we live in a
physical universe that can be described mathematically by 2+1 =3 space dimensions !

It is also known that the static (=non-moving) electrical force does not change with time (¢):
1/1°. Therefore, (same as for the variation with distance): the dimensionality of time is 0+1=1!

In short: Static electrical force interactions spread evenly over (3D) space and (1D) time.

As a thought experiment, we can change the locations of the charged particles, and re-execute
the static force experiment. We will then find a change in strength and (vector) direction of
the static electric force. This change means that the electric field can change with time. It
propagates: has a velocity!

This time variation was studied by Maxwell, who included magnetic fields as well.
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v/c=0.

Y .\ } I z-axis  OPSeTVer
« © e '

‘ Lte field
Z B B Electric Force generating
A i \‘— S ‘7 - . at Observer (O ), due to particle
moving charge at position
» x
(a) Electric force field plot of a static charge (v/c=0), (b) Co-ordinate definitions. Observer is in the
as experienced by the observer in the center. center.
Figure 3.4: Static electric field and co-ordinate definition of Eq. (3.6).
F Electro-dynamical interaction force between particle and observer (= 3D vector)
E B | field vectors to arrive at the interaction force vector
7 position of field generating particle rp,,; compared to observerr,ys, in direction
particle to observer: 7 = rops = I'parr - We use ropg = 0: observer in center.
U a | velocity U = drpar¢/dt and acceleration @ = dv/dt vectors of particle relative to

the observer
r v | vector norm of ¥ and ¥
c velocity of electro-magnetic fields in vacuum = speed of light (=299 792 km/s)
r-(rev)/c
€0 vacuum permittivity = 8.854 x 10712 F/m
Gobs | charge of the observer, located at the origin (x, y,z) = (0,0, 0)
dpar: | charge of the field generating particle
« x | represent the vector dot product and vector cross product

Table 3.1: Explanation of terms in Eq. (3.6).

This resulted in the Maxwell equations, describing the interaction between electric and magnetic
fields as function of charge and current densities, which propagate with the speed of light. These
fields can also be described (in SI units, see appendix G) for point charges by means of the
Liénard-Wiechert (LW) fields [58, pages 459-460], [64, pages 173-176], [69, pages 142-148]:

F = qops (E+ D B) (3.6)
dpart
47eg 3

E= (1= (w/c)®) (F—rdlc) +TF=(F-rvlc)*a)lc®)

E:?*E/(rc)

For details of the orientation of the coordinates in Eq. (3.6), see fig. 3.4b. The formula ab-

breviations are given in table 3.1, where the position is to be taken as the observer identifies
it: the retarded’ position. The static Coulomb law re-appears, when # = 0 and 4 = 0. For
7 = (x,y,2) = (0,0,r) the resulting electrostatic force: F = qﬁfy’;—?’r‘;” (0,0,—1) is repulsive for
equally signed charges qops and gpar;-
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Einstein studied the propagation of an electric field, under the assumption of constant speed of
electrical phenomena [53, pages 35-65], and proved the Maxwell equations to hold true. As, such,
it has been pointed out by various authors that the magnetic field arises from the static electric
field, when motion is added (in combination with the finite speed of light). The magnetic field
is an extremely important concept for engineering, with examples such as a compass, electro-
motors, Magnetic Resonance Imaging (MRI) and electron microscopes. However, as can be seen
from Eq. (3.6), the magnetic force field of one moving point charge can be expressed as a direct
function proportional to the electric field, via Fyuagnetic = qobs Ux (7 % E) /(r ¢). Therefore [80,
page 42]:

For fundamental physics,
the magnetic field is a superfluous concept!

We can reformulate the Liénard-Wiechert force from Eq. (3.6) to:

-

F
qobs

=E+—%(-xE) (3.7)

o | <y
~ =

We immediately recognize the velocity (v/c) term, indicating that the ‘'magnetic’ force of a
moving charge is smaller than the electric field and disappears for the static (7 = 0) case.

Fields from a charge moving with constant velocity

Here we study the fields that arise from a moving charge with constant velocity, in the positive
z-direction. The charge is located at position X = (r Cos[¢] Sin[0], r Sin[¢] Sin[0], r Cos[0])
(see fig. C.1a), with velocity ¥ = (0, 0, v;), with 0 < v, < c. This gives for the E-field:

p__ 4 1 - (vg/c)? 3.8)
" 4megr? (1 + (v /c)Cos[0])3 )

(Cos[]1Sin[0], Sin[¢p]Sin[0], (v;/c) + Cos[O])

As this problem statement is symmetric in the (x,y) plane we evaluate Eq. (3.6), for y=0 (or ¢ = 0).
A visualization of the electric field as given by Eq. (3.8), with ¢ = 0, for various values of v,, can
be found in fig. 3.4a, 3.5a and 3.5b.

» & o .
¢ <
®* Y . ¢
! ; \ n \\
| LY o “0 5 ° 2 ¢
\‘ \“ ' ’; “J /‘ ““
\ \ ’ , )
“ ( . 4 hd ‘ _ /" Electric Force Electric Force
A - _ ‘ o= : at Observer ( O), due to at Observer (O ), duc to
moving charge at position moving charge at position
X

(b) Electric force field plot of a uniformly moving
charge (v/c=0.8)

(a) Electric force field plot of a uniformly moving
charge (v/c=0.4)

Figure 3.5: Electric field of a uniformly moving charge for various velocities
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The direction of the (opposite of) the E-field points into the direction of the non-retarded posi-
tion of the moving charge [64, 69] , as this 'instantaneous position’ is given by:

Xinst = X+ (0,0,v,) (r/c) = r(Cosl¢p] Sin(0], Sin(¢p] Sin(0], (v./c) + Cos[0]), which has a vec-
tor direction which is identical to the (opposite of) the E-field, as given by Eq. (3.8). For low
velocities (v/c¢ <« 1), the magnetic term drops from the force equation Eq. (3.7). We find that
the total electro-dynamical force of a constant moving charge points to the same direction as
the electric field, and thus towards the 'instantaneous’ position of the moving charge.

For high values of v/c¢ we find a concentration of the electric field in the direction from where
the uniformly moving charge is coming.

Electric field flux

The flux of any vector field is given as the surface integral of the dot-product of the vector field
with the normal on the surface of the integral, as stated in Eq. (3.9),

flux = # Field(7] - (;) dA (3.9)

where the dot product of the field vector and the normalized position is integrated over a closed
surface. For the static electric field, this is known [64, 69] to be the total enclosed charge (as per
Gauss law and described by the static Maxwell equation V « E = p/eg ). We now evaluate the
integrand of Eq. (3.9), for the case of an arbitrarily moving charge with velocity 7 = (0,0, v;)
and acceleration d, based on Eq. (3.6) and integrate over a sphere (radius r) around the moving
charge.

We notice that the Electric field E, as given by Eq. (3.6), consists of two parts: a velocity and
position dependent part and an acceleration part. We first study the impact of the electric flux
for the acceleration term. For this we make use of well known vector identities as found in
appendix G, like: (d ° E) = (l;- a), d- (l; xC)=C-(d=* B) =bhe (¢*a)and @ * @ =0. When
calculating the flux contribution of the acceleration term (flux,) in Eq. (3.6), we find:

flux, = (7 * ((F—r0/c) = ﬁ)/cz)-(g) = % (F=rvlo)xa)s(F=7) =0 (3.10)

Therefore, we conclude that the acceleration term in Eq. (3.6) does not contribute to the electric
field flux. We can therefore concentrate on the velocity term, for a moving charged particle, as
expressed by Eq. (3.8). This yields for the electric flux (Eflux), with dA = r2Sin[0] d¢do:

7z T P27 7z
Efpux = # E- (f) dA =f f r2Sin(0) (E - -)dpdo @3.11)
r 0 0 r
_ qpartfnfzn (1 - (v5/¢)?)Sin[0] dpd) = dpart
dmeg Jo Jo (14 (vy/c)Cos[0])? €0

by virtue of [85] :

Tor2m (1 — (vy/¢)?) Sin(6) ~
fo fo (1+ (vz/c)Cos[0])? dpdo = 4n (3.12)

Therefore the Gauss theorem of preserved electric flux is proven valid also for moving charges
(as was to be expected from Maxwell’s equations).
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Magnetic field flux

The flux of the magnetic field is expected to be zero, given the Maxwell equation V « B = 0. This
can also be directly deduced from the Liénard-Wiechert formula Eq. (3.6), where we find the
magnetic field to be: B=7xE/ (r ¢). The magnetic field flux is the dot-product of the position 7
and the magnetic field vector B. Using the general vector identities of appendix G again, we
find that the magnetic flux (M) is given by:

(7 Fxb (7 1 [f -
Mflux=#3-(£)dA=#r* (r)dA—— Ee(F+F)dA =0 (3.13)

rec r r?

Therefore, for any magnetic field, we find the magnetic flux for a closed surface to be zero.

Electro-dynamical force flux

Now we study the electro-dynamical force flux of a uniformly moving charge, where the total
forceis given as Eq. (3.6): F = (q,ps /4meq) (E+U* (F+E)/(r c)). The 'magnetic’ force component
U (Fx* E )/ (r ¢) contains the cross product with velocity, and therefore the arguments that helped
to null the magnetic field flux do not apply. In fig. 3.6a, the 'magnetic’ force is visualized, with
the force perpendicular to the movement in z-direction.

v/e=0.8 e - v/c=0.8
e« ® o & f N
‘ < o e | ‘
-~ e L 2 J
”~ o & (o0 ) ® 0 >0 ) ¢
[ S e ) ¢
~—e o—n /
- @ S =
S _ Magnetic Force ) Total Force
4—'— S .—‘r”bsen'er (0), due to at Observer (O ), duc to
moving charge at position movmg charge at position
x ) o [

(a) Magnetic force field plot of a uniformly moving  (b) Total force field plot of a uniformly moving
charge (v/c=0.8). charge (v/c=0.8), which is the summation of the
forces as shown in fig. 3.5b and 3.6a.

Figure 3.6: Magnetic and total force field of uniformly moving charge, for v/c=0.8.

The total force, which is the summation of the electrical part and the 'magnetic’ part of the force,
is shown in fig. 3.6b. Therefore we have to perform the total computation for the force flux
(Ffrux) of a charge, moving uniformly in the z-direction, leading to [85]:
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-

i

Ffiux = #ﬁ- (;) dA = Gops # (;) «(E+0x% (F*E)/(ro))dA (3.14)

T P21 =
= dovs | [ r*sinto) (§)~(*+ﬁ*(?*ﬁ)/(rc))d¢de
0 0

_ qpartqobs(l - (Vz/c)z)
B 4meg
fﬂfzﬂ (2 — (vz/c)® +2(v;/c) Cos[O] + (v5/c)*> Cos[20]) S
“Jo Jo 2(1 + (vz/c)Cos[0])3
_ Ypartobs (1 — (v,/¢)?) ArcTanhl[v,/c]
T e (vz/c)

inl0) depdo

The function Fyrpyxlv/c] = (1 — (v,/c)?) ArcTanlv,/c]/ (vz/c) is shown in fig. 3.7, which
shows that the total electro-dynamical force flux reduces strongly towards zero as the charged
particle moves at velocities close to the speed of light!.

It must be realized that the only
‘physics’ property of the moving
charge is how it interacts with

Liénard—Wiechert total force flux vs v/c

1.0

its surrounding, which is only the .

total force, and not the electric 0.8

or magnetic fields alone. There- E o

fore the conservation of the to- g

tal electrical flux and the absence § 0.4

of a magnetic flux are mathemat- =

ical constructs only. The true 0.2

relevant factor is only the total 00 - force flux[v/ C]‘

force.  The total force flux is 0.0 0.2 0.4 0.6 0.8 1.0

NOT a constant property as func- v/e

tion of the velocity of the moving

charge! Figure 3.7: Electro-dynamic force flux of a uniformly
moving charge, as function of v/c relative to static
charge.

Energy of LW field

We have seen that the LW force is given by Fiw = q (E+ 7 * B). Energy is defined as: W =

J. 5)”7‘” F « d3, which can be calculated via velocity (and time) via: W = / tf)’”‘”‘ F+vdt. Insert-

ing the general force low, and realizing the vector dot-product rule (a * b) + @ = 0, gives:
W= ftf)’"“" GE+ D% B)-vdt= tf)’"“" g E « ¥dt. In short: the magnetic field component does
not play a role in energy considerations.

Therefore, in fields of physics where only energy (delta’s) are involved, like quantum physics, the
analysis of electric fields (or potentials) suffices.

1 In all relativistic formulas, we find the impact of velocity to scale with the speed of light. A lot of visual formula
simplification can be obtained by scaling the velocity v to the speed of light directly. To clearly keep dimensions of
formulas intact, we have chosen not to do this here.
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Radiated electro-dynamical energy: Poynting vector

The radiated energy per time per opening angle can be calculated by means of the Poynting
vector (Pry ) [64, 69, 70], which is defined as (using the vacuum magnetic permeability yg) :
1 pd = - = o - - ? -
Pow=—E*B=ey?E*xB=¢ey®Ex((F*E)/(rc)=ecoc(Ex*(-x*E)) (3.15)
Ho r

where we used ¢ = 1/(upep) and the LW fields, as given in Eq. (3.6). For the non-relativistic
case (v/c <« 1), we find for the radiated power per time unit per opening angle, for an electrical
particle (with charge ) accelerated in the z-direction (d = (0, 0, a;) ):

P =—2=1 _ _Sin?l0 (—) 3.16
w 1672€gc3 12 in°10] r (3.16)

When integrating over the total surface with arbitrary radius, we find the Larmor emitted power
formula [58, 69] for an accelerated charge:

Energy = #m . (;) dA 3.17)
T 27 Z 7 2 2
=€06f f (E*(K*E))-(I) r2Sin0ldpdo = ang
0o Jo r r 6megC

From Eq. (3.6), we find that the electric field (E) consist of two parts, that are proportional to
1/r? and 1/r. These two parts contain terms that are functions of position and velocity (1/72-
term) and additionally acceleration (1/r). We use these terms in the (dot- and cross-product)
multiplications for the total energy flux integration of Eq. (3.17). Then we find that only the
terms containing the double multiplication of the acceleration term produce a non-vanishing
result. The other terms of the Poyting vector integration end with terms of 1/7 or 1/r2. These
terms give a zero contribution to the total energy flux, at large distances from the radiation
source. Therefore [69, page 146], [64, page 176], only the part of the electric field E containing
acceleration contributes to the total radiated power, as observed from a large distance from the
radiating source.

General Relativity

Gravity is properly described (not explained) by General Relativity [53, pages 109-164]. It is
known since 1918 [23, 40], [48, pages 91-109], [65, pages 490-492], [70, §15.5], [4, 36] that the
general relativity can be linearized to equations (like the Maxwell equations) under conditions of:

1. low field strength : distances that are much larger than the Schwarzschild radius
rs = 2G M/ ¢?, with G being the gravitational constant [G = 6.67 x 107" m3 kg~!s72]
and M representing the central mass

2. low velocities : much smaller than the speed of light.

Under these conditions, the gravitational field can therefore be expressed directly via the Liénard-
Wiechert field equations, as given by Eq. (3.6), with appropriate reversal for vector force direction,
substitution of charge by gravitational mass and 1/4meg by the gravitational constant G.
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Relativistic velocity addition

For use in chapters 4.1 and 7.4.3, we now review relativistic velocity addition. Both 1D and full
3D addition will be studied, focusing on oscillatory movements, that are to be added.

Relativistic 1D velocity addition

The 1D (one dimensional) velocity addi-
tion is known since the start of SpeCial Relativistic 1D velocity add: v13/c vs v12/c & v23/c
Relativity [53] and given as:

(viz+wv3)/c

1}13/0 = (3.18)

1+ v/ c?
where vy, is the velocity of particle 2
as observed by particle 1 and wvy3 is
the velocity of particle 3 as observed
by particle 2. The relativistic addi-
tion leads to velocity v;3, which is
the velocity of particle 3 as observed
by particle 1, which we also label as
Urel-1pl6 v1, 6 v2].

From fig. 3.8 we notice the non-relativistic
limit for via/c < 1 & vp3/c < 1. When
one of the velocities (v12 or v3 ) is close
to the speed of light any positive velocity
addition hardly increases the total rela-
tivistic velocity.

Figure 3.8: 1D velocity addition.

Relativistic 3D velocity addition

The 3D (three dimensional) velocity addition was developed later in Special Relativity studies
and is described as [73, 45]:

V13 = Vre1—3p [ V12, U23] = Ul2 ® U3 = (3.19)
1 . . Y12 1 . . .
~—— 5 |Vi2+ U3+ — | (V12 * (V12 * V23))
1+ (via.v23)/cC I+y2 \c

with y12 = ylvi2/c] = 1/4/1 — (v12/¢)?. We now study the relativistic 3D velocity addition of os-
cillatory behavior of 2 particles, with spherical symmetrical distribution with radial velocity 6 v .
Therefore we use: v12 = dv1 (Cosl¢p]Sinl01], Sinld,]1Sin[61], Cos[0:1]) and similarly for v33.
When using fixed values for 0 v; & 6 v» and randomly selecting the spherical angles (¢ and ), we
calculate the resulting v,.;_3p, to find a spherical symmetrical velocity distribution, as shown
in fig. 3.9. The maximum resulting radial velocity is then given by Eq. (3.18) ve;—1p[dv1,0 v2].
For high values of resulting relativistic velocities, we find (from the histograms) that the radial
component in the velocity distribution (D [v,dv;, 6v2]) can be approximated by:

V= Vrej-1pl81,00p] )

Dlv,0v1,01,] = e(“”rel—lD[ﬁ”l'@”z] for |[6v; —0va| < v < Vyei—1pldv1,012] (3.20)
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Figure 3.9: 3D Velocity addition. The left graphs only give 1 % of the total relativistic 3D velocity
distribution, starting from n = 2 500 000 random start conditions for 7} and #,. The orange
sphere has radius 6 v, /¢ + v, /c or 1.
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Model of universe

During the 20" century our model of the universe has changed. During the first 25 years, the
concept of the universe was limited to the Milky Way, with discussions whether Andromeda was
a part of it [68, page 758], [91]. This view changed when Hubble [69, 70] discovered the relation
of red-shift and distance, leading to the expanding universe model.

This expansion is a contributor to the darkness of the night-sky, popularized as 'Olber’s paradox’
[12, 72], [68, page 756], see appendix B.

Figure 3.10: Andromeda galaxy, (image by NASA).

Satelite supported observations, as made by WMAP [89, 39], Planck [77], Hubble [88], James
Webb [90] and others, showed the vastness of the universe. They proved that the universe, at
large, has a uniform galaxy distribution [31] and no intrinsic space curvature [77, 89, 39].

Figure 3.11: ©ESA: Planck image of the temperature fluctuations of the early universe [77].
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Introduction

The source of gravity, as well as its expansion mechanism, have been subject to controversy since
the concepts of gravity were formulated [59, 21, 46]: "Is gravity an intrinsic or an induced prop-
erty?" The ’action at a distance’ concept was perceived as strange, as all interactions between
macroscopic objects require physical contact. However, even physical contact, when evaluated
at atomic scale, only involves electro-dynamical effects 'at a distance’ from the electron clouds
orbiting the nuclei, as seen in §2.2. General Relativity [53, 65, 68, 69] is considered to describe
best the gravitational interactions. It must be noted that although General Relativity properly
describes gravity, it does not explain it.

The main interactions in nature are best described, via the Standard model [56, 74], via 4
fundamental forces (see table 4.1)!. Recently, it was verified by astronomical observations, that
the speed of gravity equals the speed of light [1]. Therefore, if the long-range force of gravity is to
be explained, it must be deduce-able from the strong (and weak) nuclear force in combination
with the electro-dynamical force.

force range macroscopic velocity
static force [r]
strong nuclear | nuclear / 2?
weak nuclear nuclear / 22
electro-dynamic | infinite 1/r? speed of light
gravity infinite 1/r? speed of light

Table 4.1: Some properties of fundamental forces

If gravity is deduce-able from other forces, the range and velocity of those forces must be equal
to those of gravitaty. Therefore, the experimentally proven equality of range and speed for gravity
and electro-dynamical forces triggers the thought process to attempt to explain gravity as an
electro-dynamically induced effect. We aim to determine the electro-dynamical force of two
macroscopically separated static neutrons and need to prove that this force is attractive and
drops with distance as 1/r2. Further, we need to prove that this electro-dynamically induced
gravity bends light near large masses, and creates (Shapiro) time delay.

1 The weak and electro-dynamical forces have a unified description: electro-weak interaction [93]
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In §3.3 [56, 74] we found that a neutron consists of various charged sub-particles (quarks).
These quarks are assumed to be moving in their quantum mechanical ground state [57]. We
will study the induced electro-dynamical forces of moving charged quarks inside the neutrons.
Then, we repeat this analysis for a proton-proton pair and a proton-neutron pair. A simplified,
non-quantum mechanical, approach is used to maintain focus on the underlying physics.

Electro-dynamical forces and quark movements

Electro-dynamical force interactions are described by the linear Maxwell equations, which can
also be expressed via the Liénard-Wiechert fields [64, 69] for a point charge, as given by Eq. (3.6),
in §3.5. The total electrical field is then the addition of all electrical fields of all (charged) field
generating particles. Usually the field generating particles are assumed to be point sources of
infinitely small size, leading to a spherical symmetrical field distribution around a static particle.
However, in this article we will not assume a point size of nuclear particles (like protons or neu-
trons). The Standard Model [56, 74] describes neutrons and protons to consist of 3 (point-size)
moving quarks, carrying parts of elementary charge, as shown in fig. 3.3a. The 'up’ quarks carry
+2/3 of elementary charge, whereas 'down’ quarks carry -1/3 of elementary charge.

Quantum theory [57], see §3.4, prescribes that if a particle is confined to a limited space, it
can only obtain various distinct energy (movement) states, where the lowest energy state still
gives rise to a non-zero energy (=movement) state. Therefore, we may assume that the quarks in
a proton or neutron are in permanent movement, confined to the nucleus by the strong nuclear
forces.

In this chapter, we will study the resulting electro-dynamical forces due to this permanent
movement of the quarks in a neutron and proton. For simplicity, we will not use full quantum
mechanical formulations, but limit the evaluations to the forces arising amongst the quarks
of distant neutrons evaluated by the Liénard-Wiechert fields, using macroscopic concepts of
classical mechanics such as velocity and acceleration.

The electro-dynamical force between 2 quarks

We aim to calculate the static force between two static neutrons which are at macroscopic
distances from each other. We will treat the neutron-neutron interaction as a 6-body interaction,
as each of the 3 quarks of each neutron is in interaction with the 3 quarks of the other neutron.
This results in 3x3=9 force interactions, as seen in fig. 4.1. We assume that all quarks are in
permanent movement, and calculate the resulting force via Eq. (3.6). We realize that:

o the quarks are confined to the static neutrons and thus have as time average: zero velocity
and zero acceleration,

o the frequency of the movements of the confined quarks [57] is extremely high and thus
only time averaged forces are important,

e the quark movements of the 2 separated neutrons can be taken to be independent.

We study the forces between two moving charges (m qq, n qp), with the field generating particle,
located at space co-ordinates X = (0,0, 7). We indicate the elementary proton charge with ¢q.
The pre-factors (m & n) indicate the partial charges of quarks (+2/3 & -1/3). These quarks are
assumed to be in a stable, minimum energy state, and thus do not emit any radiation. This
means that the emissive part of the Liénard-Wiechert fields (containing the acceleration) as
given in Eq. (3.6) can be omitted, see §3.5.6 [64, page 176], [69, page 146].
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Figure 4.1: The 2 neutrons each contain 3 moving charged quarks, leading to a total of 9 electro-
dynamical forces between the quarks.

The resulting force vector can be expressed as the time integral of:

2
I’l6]0

- m 2

Fg g, (1] :(I%C,Fy,Fz)=—4HW2 (1-@©v/o)7).. (4.1)
(6vic)Coslp,] SinlB,] ©Bvic)Sinlp,]Sinl0,] 2-(vic)*>+2@v/c)Cosl,] +(vi/c)?>Cos[20,]
(1+vic)CoslO,1)2 ' (1+©vic)Cosi0,1)2 ' 2(1+ v/c)CoslO,])3

For the velocity difference between the 2 moving quarks, we use spherical coordinates (vy, vy, v;) =
6v(Coslgp,]Sin(0,], Sinlp,]Sinl8,], Cos[f,]). The time averaging operation can be regarded
as integrating Eq. (4.1) over all angles and the (normalized) velocity distribution, using spherical
integration. The total static force is then found from integration as given in Eq. (4.2).

o _ S JT J&T Fgyeagy 1] DIV 512 Sinl,] depy, d6, dSv
N A ol PI6v] 6v2Sin(0,] dp,db,dsv

(4.2)

The function D[dv] is a - yet undetermined - distribution function of é v, defined only for
0 <6 v < c. For one moving charge (with one radial velocity dvy) we can take the distribution
function D[ v] to be a Dirac delta function around d vy. Integration of Eq. (4.2) can now be
performed, yielding:

mngq; 1-(8vo/c)?

g, = — ,0, ArcTanhl[b6vy/c 4.3
=2 Amegr? dvglc [Ovo/c] (4.3)

This is identical to the force flux, as given by Eq. (3.14), apart from the 47 surface integration
factor. We find the resulting force to drop with distance as 1/7?. When dropping the pre-factor
_ 2
4:;16'; :’20 , we visualize the velocity dependence in fig. 4.2, under the name 'Dirac’ distribution. For

dvg = 0 we find the repulsive static force between 2 equally signed static charges.

Further, we calculate the force between two moving charges, each assumed to move with
a single radial velocity, but with random spherical angles. In §3.7.2, we found the resulting radial
velocity distribution to be of exponential shape in Eq. (3.20). Calculating the resulting electro-
dynamical force via Eq. (4.2), we find a lengthy expression [85], which we label as y[dvy/c] .
The results are visualized in fig. 4.2, where d vy is to be interpreted as v,¢;[0v;, §v2] as given
in Eq. (3.18). For 6vy = 0 we find the repulsive static force between 2 equally signed static
charges. This force drops over distance as 1/r? which is equal for the static gravitational force.
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TOi'Ql infer-neui‘ron force Oscillating Quark force vs vrel-1D/c
1.0
For the full interaction force be-
tween 2 neutrons, we need to as- 0.8
sess the summation of the 3x3=9
interactions forces between the g o6
. &
quarks, as given by Eq. (4.3). We =
distinguish between the 3 types 5 |04
of velocity delta’s between the :
_— Dist = Exp[vrel-1D / ¢ |
types of quarks of the 2 neu- 0.2 ) )
Dist = Dirac[vrel-1D/c]
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§v"" and down-down &v’}" M o L

and notice that we take into
account the different partial
charges of these quarks (+2/3
and -1/3). We arrive at (assum-
ing fully non-correlated veloc-
ities of the quarks inside each
neutron):

v/c

Figure 4.2: Static Force functions.
For one moving charge: 'Dirac’ distribution.
For two moving charges: 'Exp’ distribution y[dvg]

3 3
-q 1
Frer Z Z ety = (4n€00r2) (5) (0,0,4x[6vyic] —8x[6v!/cl +4xl6v]iic]) (4.4)

Its magnitude is determined by the velocity difference (distribution) of the various quark types
in the 2 neutrons (6v]j;, §v"™", 5v") 2. The exact inter-quark velocity distributions will need
to follow from more detailed assessments, based on relativistic (full 3D) velocity additions
of the individual quark velocities, correlated within each neutron. Alternatively a full (rela-
tivistic) quantum mechanical assessment is to be employed. Here, we will limit ourselves to
the impact of Eq. 4.4 for the exponential velocity distribution. We assume the quarks inside
each neutron to be in totally independent movement, and can thus evaluate the total neutron-
neutron force, as expressed by Eq. 4.4, by evaluating the electro-dynamical forces arising from
the various (relativistically added, see §3.7.2) inter-quark velocities (between the 2 neutrons):
ovjit = vrel| vup, vy ] 61}"” = vrel] vup, down] , 51/"" = vrel[v" Vlown’ vdown] , where vup
and v)j ~ indicate the Velocmes of the up- and down- quarks (scaled to the speed of light c) of
the 2 involved neutrons. We evaluate Eq. (4.2) for the exponential velocity distribution (Eq. 3.20)
, to arrive a lengthy expression [85], which can be inserted into Eq. (4.4) and represented graphi-

cally as shown in fig. 4.3a.

From fig. 4.3a, it becomes clear that the 2 neutrons have an attractive force (F < 0) when
the radial velocities of the up- and down- quarks are limited to: vy,/c+ v}, /c <0.8. This
observation is not supported by the conclusions on the quantum mechanlcal movement of the
quarks inside a neutron, as stated in §3.4. We will come back to this topic in §4.6.

2 In the notation v ,we indicate with a b the type of quark (up or down) and with x y the atomic particle
(p=proton or n=neutron) in which the quark resides
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Figure 4.3: Electro-dynamical forces in protons and neutrons, due to quark movement.
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Force between proton-neutron and proton-proton

In this paragraph we will study the electro-dynamically induced interaction between 2 protons
and a proton-neutron pair, with their different quark (and quark velocity) distributions. As
indicated in the previous paragraph a proton can be modeled as consisting of 3 quarks like
the neutron, as given in fig. 3.3a and 4.1. When evaluating the electro-dynamical interaction
between a proton and a neutron, we find a similar formula like Eq. (4.4):

2
= _ _qo 1 pn pn pn
Fpen = (W) (5) (0,0, 8y[6vyy/cl = 10x[6 v, ,/cl + 2x[6v),/cl) (4.5)

For the interaction between two static protons, the following can be found:

2
N —-q; 1
Fpep = (W) (5) (0,0, 166Vl /cl — 8xl6vhl el + x(6vhhicl) (4.6)

The results of these calculations are visualized in fig. 4.3. We recognize the static proton-proton
force, for vﬁp = VZ = 0, which notably gives a large force for the proton-proton interaction.
. own . . . 2 .

However, this large static interaction, is reduced towards zero, by the (1 — (v/c)°) term in the

Liénard-Wiechert force, as expressed in Eq. (3.6).

Quark-gravity impact of G

The analysis on the root cause of inertia (chapter 7) and the impact of the gravitational constant
G, as will be performed in §7.5, indicates that the sign of G is not a consequential parameter,
when only gravitational effects are to be taken into account. Therefore it is inconsequential
whether we find (only) positive or negative forces when evaluating the total forces, due to the
quark interactions, between separated protons or neutrons. Quantum mechanical arguments
(as given in §3.4.2) determine that only valid solutions can exist for quark velocity values close to
the speed of light.Therefore all 4 quark velocities inside the proton ( vﬁp & vsown) and neutron
( vﬁp & v ) need to have values close to the speed of light, as visualized in fig 4.3.

down

Further it is known that the gravitational static mass of protons and neutrons are almost equal

[92], and thus F.., =~ Fy., = Fy., . The static gravitational forces, as expressed by Eq. (4.4),
(4.5) and (4.6), are to be compared with the classical gravitational law: Fg = M :Z”G ;, with
7 = (0,0, r) ,leading to the quantitiative indication (dropping the minus sign, as G can be

negative):

Fpen = Fg (4.7

2
qo m,m, G

(W) (0,0,4x[8vy;/cl —8x[Sv}/c]l +4xldvyiicl) = T(O,O, 1)

—

2
o (4xlSvynic] —8xl6vI/cl +4xl6viiicl) = mym,G
367meg u
N
32

4x[6vyy,lcl —8xlov,;/cl +4xldvy)icl = mpm,G/ O ~7x1073%

36meg
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And similarly, evaluating Fj,..,, and Fj.., we find:

16x(6vy,,/cl = 8x[6vPH el + y16v! ) icl = mpm, G/ 66536 ~7x107% (4.8)
0
2
Bx[6vyy Il — 10x[6v"" el +2x (600 1l = my, m"GlgezSe ~7x10736
0

In conclusions: We need to identify solutions for the quark velocities, as prescribed by Eq. (4.7)
and (4.8), visualized in fig. 4.3, while these solutions need to be close to the velocity of light.
We have 4 independent quark velocities, while we need to respect 3 (force) equalities. This is a
solvable set of equations, as we know from fig. 4.2 that y[v/c] — 0 as v/c — 1, in-line with the
quantum-mechanical argumentation given before.

As mentioned before: the entire quark-force analysis needs to be redone by quantum me-
chanical, relativistic means, (with kinetic quark energies as leading output, serving as input for
the LW-force calculations). Also quark-movement correlations need to be considered. Thus,
these calculations only be considered exploratory. Therefore pursuing accurate solutions for
the set of equations mentioned above, serves no practical purpose, as long as a more accurate
analysis is lacking. However, the concept that gravity is due to moving, oscillating, quarks inside
the nuclei remains valid, despite the crudeness of the models used.

Gravitational mass upon movement

The concept of oscillating motions of charged particles leading to gravitational mass, means that
the amount of gravitational mass follows the relativistic Doppler law when the mass is moving
macroscopically.

Alternatively, when repeating the 2-quanta thought experiment as mentioned in §3.2, for a
moving box, we find that the emitted quanta, when deflected to the observer, show a relativistic
Doppler effect, as given by Eq. (3.2). Via the Planck law, Eq. (3.3), we find that the energy of
the emitted quanta is changed for the moving box. Via the mass-energy equality Eq. (3.1), we
therefore find that the quanta, emitted from a moving box, represent a different (gravitational)
mass than when emitted from a non-moving box. If we extend this analysis (assuming all mass
can be transferred to quantum energy), we find that the amount of the moving mass itself is
changed, according to the relativistic Doppler law.

hve V1-(vz/c)?

¢ 1+ (vy/c)Cos[0]

mass = Elc* = hvic* = 4.9)
where v represents the frequency of the quant as observed when co-moving with the box.

Therefore, the gravitational mass amount changes with movement, as given by Eq. (4.9). The
inertial mass amount increases with velocity as (to be) discussed in §7.3.2, and given by Eq. (7.9).

In short: charge is a motion invariant, but the, charged oscillations induced, gravitational
mass is not.
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Electron and anti-matter

Sofar, we only discussed the gravitational interaction between protons and neutrons. The gravi-
tational force by an electron is not yet treated in detail, as we do not have a model of the electron,
except that of a (near) point charge. This implies, as seen in §3.4, a high (self-vibration?) velocity
and thus a small gravitational mass. However, without a proper model for the electron, a further
analysis of its gravitational mass is fruitless.

A further thought concerns anti-matter: if we use the analysis of the electron and apply it
to the oppositely charged positron, we obtain an opposite force3.

In conclusion: the gravitational forces of electron and anti-matter need further study.

Conclusions

We have identified in the previous paragraphs:

e The quantum-mechanically induced charged quark oscillatory movements inside a proton
and neutron are the electro-dynamical source of gravity: quark-gravity.

e The identified force drops statically as 1/r2.

e The speed of gravity equals the speed of electro-dynamical interactions which is the speed
of light, as confirmed experimentally in 2017 [1].

e The gravitational vector force follows from the 2 previous bullet points [9], and is given
by the Liénard-Wiechert force description, as given by Eq. (3.6), with replacement of
1/(4mep) by the gravitational constant G and the charges by masses.

e The velocity dependence of the amount of gravitational mass follows the relativistic
Doppler law.

Finally: the force fields calculations due to moving quarks inside the nuclei, were executed by
non-quantum mechanical procedures. It is suggested to perform this analysis with quantum
mechanical, relativistic methodology. Further studies are also needed to capture the gravitational
effects of electrons and anti-matter.

3 and eventually an opposite inertial effects (see chapter 7).
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Introduction

In this chapter we will investigate the impact of the concept that gravity is an electro-dynamically
induced effect, by studying various typical General Relativity (GR) tests on impact of gravity on
light (=electro-dynamic radiation). Both bending of light as well as Shapiro time delay will be
discussed. First we will present some historic evaluations of bending of light and then present
an assessment based upon electro-dynamically induced gravity. We will confirm this formalism
in analyzing the Shapiro time delay. Finally, we will touch upon some theoretical models to
further explain the bending of light under gravity.

Figure 5.1: ESA/NASA James Webb image of an
Einstein ring around galaxy SMACSJ0028.2-7537.
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Newtonian evaluation of light bending

In this paragraph we want to compute the deflection of light by a central mass, taking a simplified
model of deflection of light in a Newtonian sense [53, pages 97-108], as visualized in fig. 5.2.
In this model, light is depicted as a particle (with mass m;;g¢,,) moving at the speed of light.
We compute the horizontal (x) velocity buildup as the beam of light passes a large mass, with
closest approximation of R0. Assuming the deflection to be small (¢, < 1), the ray can be
approximated (to first order) by a straight line, simplifying the calculation. The horizontal
momentum can be expressed as the integration of the horizontal force on the particle and
time during the ‘flyby’. With the central mass (M) located at (x, y) = (0,0) , the horizontal
gravitational and inertial forces are given as :

Figure 5.2: Ray of light passing by sun, at distance RO.

FP0n,lyl = G Mgun myign RO (RO® + y?)% (5.1)
Fg}'lf(;v[y] = Finertial = Miight Ahor

The my;gn, drops out of the equation. Approximating the speed of light to be constant during
the fly-by, the total horizontal velocity can be expressed as:

o0 o0
Vhor :f Apor dt :f apordylc (5.2)
—0o0 —0o0
(e0)
= GMS,m/cf RO/ (R0? + y*)*?dy = 2G Myyupn / cRO
-0

Therefore the deflection angle ¢ = Vpor / Vyer = Vnor / ¢ amounts to :
Ghor = 2G Mgyn ! ¢* RO (5.3)

This is the Newtonian deflection angle for a beam of light coming close to a heavy object [53,
pages 97-108].
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General Relativity evaluation of light bending

In General Relativity [48, 52, 53, 65, 66, 68, 69, 70], bending of light is explained by employing
curved space-time, as shown in fig. 5.3. This is described for a static, rotational symmetrical
mass ( Mgy,) by the Schwarzschild metric:
2G Mgyn
c2r

2G Mgyn

. ytde> - (1
ccr

ds? = (1- )L dr? — r2(d6? + Sin?(0) d¢?) (5.4)

where ds? represents the line element, and ¢, r, ¢, 0 are the space and time coordinates of the
stationary observer. The evaluation of the deflected light beam then leads to:

Onor = 4G Mgy, ¢ RO (5.5)

Note, that the General Relativity result of Eq. (5.5) amounts to twice the value for the defection
angle of the Newton evaluation as given in Eq. (5.3).

-1
1

Sun

|
ENEEEN L

Figure 5.3: General relativity explains light bending by gravitational space-time curvature.

Further it is to be noted that Eq. (5.4) indicates that a ray of light (ds? = 0), moving radially
outward (d¢? = 0 and d6? = 0) has a speed (as observed by a stationary observer) of:

c =\/=5=c
grav dr? cr
This indicates that the speed of light near a mass (cgrqy) is lower than further away. In
short: gravity reduces the speed of light: it has refractive properties, with refractive index
n=clcgrap,=1/(1- %) > 1. This is the starting point for gravitational lensing [44] and

Shapiro time delay [38].
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Refraction evaluation of light bending by gravity

In this paragraph we will investigate how the electro-dynamically induced gravity creates deflec-
tion of light in Euclidean space. Deflection of light is created at interfaces of material media with
different refractive indices, such as an air-glass interface, see in fig. 5.4.

Y

air

glass

Figure 5.4: Refraction of light due to change of refractive index (represented by the color depth
in blue). The discrete change of refractive index for a glass-air interface is shown, as well as the
varying refractive index of the varying gravitational field of a large mass, like the sun.

In fact, the definition of the refractive index (n) is the velocity ratio of light between 2 different
media. The electrical interactions between light and medium slow down the varying electrical
fields that want to pass through the medium, including light. The electrical fields of the moving
electrons around the nuclei in the medium act similar as the electrical fields of the moving
quarks inside the nuclei that generate gravity. As such, a gravitational field creates speed reduc-
tion of light and thus acts as a medium with a refractive index.
A variable refractive index affects the path of light and is studied in a field of physics, known as
geometrical optics [49, 61]. It is governed by the eikonal equation:
L, ar -

a(n[r]a) = Vnlr] (5.7)
where: V is the gradient, s indicates the parametric distance along the ray of light and 7 indicates
the ray trajectory though Euclidean 3D space.
It must be noted that already in 1920, Eddington [50, page 50], [51, pages 99-100] had pointed
out that the (‘'material medium’) eikonal equation Eq. (5.7) properly describes the gravitational
light bending, assuming the refractive index of gravity (=speed reduction of light under influence
of gravity) is given by Eq. (5.6), see also [14, 15, 16, 35], [48, pages 95-97].

For small deflection angles, a solution to Eq. (5.7) on gravitational light bending, is given in
[87]. The horizontal deflection angle is computed by evaluating the bending of the light, due
to the gradient of the gravitational field, simplifying the light path to a straight line and then
evaluating:

o0
Phor :f ViornlFlds=4G Mgy, | ¢* RO (5.8)
(e.0]

The integration follows identical calculation as used to derive Eq. (5.3), with G My, of the
gravitation force replaced by 2 G My, of the gravitational refractive index.
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Shapiro gravitational time delay

Another direct observable of the reduction of the speed of light in a gravitational field, is time
delay of light as it passes close to a heavy object, as first described by Shapiro [38].

’ earth
,

A Y
Rsat ¥,

distant A bouncing
. quasar s satelite

Figure 5.5: Time delay, due to the reduction of speed of light in the gravitation field of sun.

We are studying the time required for an electro-magnetic pulse (light / radar) to travel from
earth to a ‘bouncing satellite’ - and back - which can be an active man-made satellite, or a
planet. We use a straight line as approximation for the signal path, which travels through the
gravitational field of a central mass (like the sun), at closest proximity of R0. The total time for
the signal to travel the double trip satellite-earth, can be expressed as (using Eq. (5.6) for speed
oflightand1/(1—x) = 1+ x for x < 1):

12 Yearth ] Yearth 1
TShapiro =2 dt = 2[ e dy 2/c [ T Y-Ty — dy (5.9
1 ~Year  CLYI 1] — =2 %%sun

Ysar a c?y/R0O?*+y?
4GMsun [Yearth 1

:z(yearth+ysat)/c + c3 ~Vear /R02+y2d
Msun

=2 Yearth + VYsar) /€ + (ArcSinhlYeartn!RO] + ArcSinhl ysq:/RO)]

With Yeartnh =1/ T ea”h 0 , Vsat =\/ T2, R2 The first term of Eq. (5.9) gives the time duration

of a signal traveling from earth to satellite and back, in the absence of a gravitational field.
The second term gives the gravitational (refractive) time delay. Assuming y.,;¢,/R0 > 1 and
Vsar! RO > 1 allows the simplification for x > 1 of ArcSinh[x] = Ln[x + V1+x%] = Ln[2x].
Eq. (5.9) can be simplified to (using Ln[ab] = Lnla] + Ln[b] ):

4G M.
6T5hapiro _ 5 sun ;. [4yearRtgzysat

This equals the Shapiro time delay fo a radar bounce experiment [65, 68, 38] as given by General
Relativity.

] (5.10)
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In fact, the Shapiro time delay is a special case of the general time delay created by gravity [48,
page 98], [65, page 155], [69, page 233], [70, page 184], [68, page 1055].

Linearized GR and Newtonian approximation

In this paragraph we compare the various approximations of the General Relativity (GR) metrics
with the 'material medium’ refractive index analogon (=variation of c). We start with the full
Schwarzschild solution (with curved space-time and a finite speed of light), as given in §5.3:

=(1 yetde? — (1 C—)ldr — 12 (d6? + Sin®(0)d¢?) (5.11)

from which we have found the velocity variation of light passing through a gravitational field
(for ds®> = 0, d¢p? = 0 and d6? = 0) as given by Eq. (5.6):

OR (5.12)

GR dr? _ 2G]Wsun
grav W =cC - 2

c2r
In the linearized General Relativity [68, page 442], [48, 65, 68], [70, §15.5], with a finite light
propagation speed in near-Euclidean space, it is found that the Schwarzschild metric can be
approximated by:

2G Mgy,
ccr

2G Msyn

= yedt* — (1+ =, ) (dr? + r*(d6? + Sin[01d¢?)) (5.13)

Then we find for the velocity of light :

—Su" 2GM.
lm - ccr _ sun
Cgrav = \/ 2GMW, ~C(l 2y ) (5.14)
2r

Basedon vI—x)/(1+x) = 1 —x+ x%/2 — ..., for 0 < x < 1, we find that the linearized GR
velocity of light equals that of the full analytical Schwarzschild solution Eq (5.11), for small
values of 2G == Thus the gravitational light bending angle is equal to Eq. (5.5).

Sometimes [65 §17.10] this solution is called the 'Newtonian” approximation. However, any
Newtwonian theory is characterized by 'immediate action at a distance’ which means an infinite
interaction speed. The linearized General Relativity approximation is still based on a fiinite
speed of light. Therefore, it might be better to speak of the linearized version of General Relativity
as 'Maxwellian’ approximation.

We now study a Newtonian particle (with finite mass) moving at the speed of light, as done
in §5.2. We can formulate the metric, [24, 105] in GR terms of metric tensor elements: gop =
(1- ZGM;"” ) ¢? and the other 8uv = Oy, with 6, representing the Kronecker delta function.
We then find:

2GM

= C—r”‘”) c?dt* — (dr® + r*(d0* + Sin®[01d¢*)) (5.15)

And thus, similar as above, v/1—x = 1 — x/2 + x?/8 — ..., we find for the Newtonian approxima-
tion for the velocity of light:

dr2 ZGM GM
Newton sun
cpran " =1\ =3 17" cy/1- o 1 - —) (5.16)

This leads to only half of the gravitational GR light bending as the driving term is halved.

The pure Newtonian "particle’ evaluation, with infinite propagation speed of light gives pure
Euclidean space, as goo = 1 — ZGCZM — 1 as ¢ — oo. This leads to a purely Eucidean met-
ric: ds? = ¢2,,,dt? + dr? + r?(d0? + Sin?[0] d¢?), which represents (in Newtonian sense) a
'light-particle’ with velocity c¢;,4x, which will give of course zero bending of light as ¢4 — 0.
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Some qualitative theory on refractive index

The theory on the root cause of the refractive index is given by the Lorentz model [49, 54, 60],
which provides a qualitative indication for the trends in refractive indexes. The model is based
on an atomic model of matter in which the rotating electrons around the nucleus are influenced
by the incoming varying electro-dynamical fields (such as light or radio signals). A resonance
frequency then occurs when (in classical mechanical terms) the electron revolves around the
nucleus with the same frequency as that of the incoming electro-dynamical field.

In our model for gravity (see chapter 4), we have found the moving quarks in the nucleus
to create gravity, and thus refraction. The refractive resonance frequency of gravity is thus the
frequency of the quarks (moving at the speed of light) as they move inside the nucleus (with the
smallest possible dimensions). Therefore the resulting resonance frequency for gravitational
refraction, is much higher than the one resulting from atomic electron orbit interactions. There-
fore a frequency dependence of gravitational refraction is not expected, and thus gravitational
bending of light and radio signals should be equal.

In summary: we have found that the mechanism creating gravity (=moving electrically charged
quarks) is the same mechanism that creates the speed reduction impact on the varying electric
field of a light beam. Therefore, gravity must be a direct measure for refraction. However, a
quantitative theory, leading up to exact equations for the refractive index, such as Eq. (5.6), is
still to be developed'.

Conclusion on optical properties of gravity

As gravity is electro-dynamical in essence, due to moving quark charges, it has refractive prop-
erties: it reduces the speed of light. Geometrical optics learns that gravity will therefore affect
the path of light. Based on the linearized description of General Relativity expression for the
refractive index of gravity, a Euclidean space evaluation properly describes the bending of light
around a mass as well as Shapiro time delay, in line with the experimental evidence. No fre-
quency dependence of the gravitational refraction is expected.

However, a quantitative theory, leading up to exact equations for the refractive index, such
as Eq. (5.6), is still to be developed.

1 An alternative method to find the refractive index, can be to reverse engineer the linearized GR metric of
Eqg. (5.13) to the Maxwellian/Liénard-Wiechter equations [70, §15.5], [4] and thus prove Eq. (5.14) and the consequen-
tial light bending.
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Figure 5.6:
James Webb telescope [90] image of MACS0416,
showing gravitational lensing (image by NASA).
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Introduction

In this chapter, we aim to predict the atomic mass [92] of various low-mass isotopes, based on
the model of moving quarks as developed in chapter 4.

Based on the quark model for the proton and neutron, see fig. 3.3a, we extend the analysis
of the quark distribution for various light isotopes, like Deuterium, Tritium and Helium-4. We
compute the quark configurations and attempt to reach a microscopic explanation for the
atomic mass of the nucleus. Of course, the mass is expected to increase linearly with the num-
ber of involved particles (=protons and neutrons). However, some fine trends (as the mass of
Helium-4) require further attention. The starting assumption is that an extended, 'large-sized’
nucleus has a small quantum mechanical lowest energy state, and thus a lower (gravitational)
mass. This is based upon the analysis of an infinite deep spherical energy well [57, pages 26,
130], given by: E = h? /(8 ma?), with’a’ : the dimension of the infinite well, # being the Planck
constant, and 'm’ as mass of the involved particle, see also fig 3.3b. Therefore, if we analyze the
geometry of the various nuclei, we expect to find a correlation between the relative atomic mass
and the maximum dimension of the nucleus.

A full quantitative analysis of the lowest energy state of a nucleus, containing a multitude
of quarks, requires a full relativistic, quantum mechanical analysis. However, this is outside
the scope of the current analysis. We limit ourselves to a non-relativistic, classical mechanics
analysis and treat the nucleus as a N-particle problem, with force interactions between all quarks
in the nucleus. We aim to find the minimum energy (= stable) state of the nucleus, and obtain
then the maximum inter-quark distance inside the nucleus, which we aim to correlate with the
atomic mass. It is clear that the minimum energy state is not a 'fixed’ = 'stable’ configuration,
such as found in solid state physics (see fig. 2.1), but more the 'most likely’ configuration in
quantum-mechanical sense.
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Computation of quark distributions

We compute the quark distribution by taking a non-quantum-mechanical, non-relativistic, force
approach. As force interaction between the quarks we start from the Cornell potential [76, 83,
86, 29, 97], and add a short term repulsive term, to prevent that the oppositely charged up and
down quarks absorb each other. Thus the total potential, between 2 charged quarks at distance
1, is described as:

Vii—q; 1] = qiqj/r+(rq/r)3/3+gluer (6.1)

We use a summation of:

1. static electrical Coulomb potential (between charges ¢; and q; b,

2. repulsive short range potential (aiming to preserve a minimum distance between quarks),
with length parameter ry,

3. alongrange attractive potential (representing the strong nuclear force, keeping all quarks
together - even at high starting velocity).

Varying the value of r; has significant impact on the shape of the total potential, as given in
fig. 6.1a.

| Quark Potential(r): glue= 1.0 | | —Quark Force(r): glue= 1.0 |
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=
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(a) Quark potential. (b) - Quark force: attractive force is negative.

Figure 6.1: Quark potential and force. The (long range) glue function creates stability, whereas
the short term part of the potential assures that a minimum quark distance is maintained.
Variation of the quark distance parameter r, leads to a varying balance between Coulomb and
binding forces, resulting in significantly different geometries of the nucleus. A larger value of of
the 'quark radius’ r, leads to less Coulomb interaction between the quarks and thus a less deep
potential (as given by the dashed lines).

To this potential, we have added a friction term, to assure that from varying initial conditions
(for quark positions and velocities), the final, stable, quark positions in the nucleus are reached,

after integration over time. The total force, per quark pair (i,j), is then given (via F = =V « V) as,
Eq. (6.2):
Fgi—q;[F] = qiqj(?/rg) + rg (F/1°) —glue(Flr) — k7D (6.2)

In our N-particle simulations, we started from parameter values as found in literature for the
Cornell potential [97], with glue = 1 GeV/fm [86, 97]. Further we used varying values of the

1 In literature this Coulomb factor is multiplied with a baryon QCD pre-factor (2 a5 /3) [97], with a5 = 1, The
value of a varies largely in literature from 0.3 [86, page 7] to 1.0 [97, pages 4, 9]. As such, the involved QCD potentials
vary largely in relative effect of the Coulomb force vs the binding nuclear force, leading to variations in final quark
distributions in the isotope nucleus.
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'quark-radius’ rg, and studied the range from 0.3 < r; < 2.0 fm. The friction value (k) is set to
k = 0.005 a.u.. As initial conditions we used positions and velocities (for particle i), in a sphere
surrounding the origin, in multiple variations of (x;, y;, z;) = (i Cosli], i Cos[2i],iCos[3i],]).
In our simulations, we used g; for the normalized up and down quark charges: +2 and -1. Based
on these parameters, we evaluate Eq. (6.2) for the 3 quark charge combinations, as seen in
fig. 6.1b. The resulting numerical integration of the quark positions and velocities were executed
by the SW Mathematica [85].

Simulation results on low-Z nuclei

These simulations were executed for various light isotope nuclei, from a neutron up to Fluor-19.
For the 3-quark neutrons and protons, we find the 'semi-stable’ final geometry in our simulations
to be a linear shape, with the equally charged quarks at the end, see fig. 6.4. The maximum
inter-quark distance for a proton is larger than for a neutron, as the 2-up quarks repel stronger
than the 2-down quarks. We studied the impact of the 'quark-radius’ on the shape of the nucleus,
see fig. 6.2a, notably by studying the ’largest inter-quark distance’ in the nucleus. We find the
linear shape of both proton and neutron to change to a more H,O molecule shape for higher
values of r;. From fig. 6.1a, it is clear that a larger 'quark-radius’ r; leads to less Coulomb
interaction amongst the quarks in a nucleus, and thus the long range binding force (represented
by glue in Eq. (6.1) becomes dominant. Therefore the linear shape of the neutron and proton
get bended, for increasing r,. We can identify in fig. 6.2a a specific value of r; for which the
shape of the nucleus changes for both neutron and proton. For a proton this change in shape
occurs at a higher value of r; than for a neutron as the proton has 2 double charged up quarks,
whose electrical repellent forces will resist the binding force (gl/ue) more.

| longest quark distance vs rq | | longest quark distance vs rq |
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(a) The largest quark distance for protons and neu-  (b) The largest quark distance for deuteriuim and
trons as function of the 'quark-radius’ r,. Forthe =~ Helium 3 and 4 as function of the 'quark distance’
neutron a remarkable change in the slope of the rq. The Helium-4 distribution changes signifi-
graph occurs around r4 = 1.0 fm, as the shape of  cantly for r; > 0.55 fm, from an elongated shape
the neutron changes. For the proton this change  to a rounder shape at increasing r.

occurs at a higher value of r; = 1.5 fm.

Figure 6.2: Largest quark distance for various low-Z nuclei as function of the 'quark-radius’ ry.

We studied the impact of r; on some further low-Z nuclei, like Deuterium, Tritium, Helium-3
and Helium-4, as seen in fig. 6.2b. For r; = 0.50 fm, various individual nucleus shapes are given
in fig. 6.3.
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For r4 = 0.5 fm, the 'stable’ quark configurations of more low-Z nuclei are shown in fig. 6.4.

From these quark configurations , we determine the "largest inter-quark distance’, which we then
correlate with the Atomic Mass, as shown in table 6.1 (as summary of simulations with varying
initial conditions) and visualized in fig. 6.5b. We observe a nice correlation between the "largest
inter-quark distance’ and the mass parameter [ (M/A-1)*1000) ], apart from He3 and Tritium.
We find different geometrical structures between He3 and Tritium, as He3 has a centrally +2/3
charged quark, which is not present in Tritium.

deuterium

® u 3
d: 3
rq:0.50

tritium
® u 4
d: §
rq:0.50

helium3

® u s
d: 4
rq:0.50

helium4

® uo
d: 6
rq:0.50

Figure 6.3: The quark distribution of various low-Z elements in 4 different views.

We conclude that the r4 parameter determines the shape of the low-A isotope nuclei, notably up
to Lithium-6. For Helium-4, we find various quark configurations for (almost) identical value of
rq, with varying "largest inter-quark distance’. Therefore, it is crucial to repeat these calculations
with a full relativistic, quantum-mechanical model. Then the minimum energy level of a nucleus
can be determined and correlated with the atomic mass, in line with chapter 4.

Conclusions

In this chapter we have looked for a correlation between the quark distributions and the ob-
served atomic mass, using a semi-classical methodology. A correlation between atomic mass
and the quark distances has been found, see fig. 6.5b. Notably the atomic mass for helium-4
correlates well with the identified quark distribution.

However, it is clear that these calculations need to be refined, by means of fully relativistic
and quantum mechanical analysis. It is then expected that the ground (kinetic) energy state
correlates with the mass. This analysis is beyond the scope of this book, and is suggested to the
reader.
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’

Figure 6.4: Quark distributions inside various light isotopes, based on ’'semi-stable-states
arising from the simulations (with parameters: r; = 0.5 fm, glue = 1.0 GeV/fm). Larger-mass
nuclei obtain a spherical shape, with the doubly charged up quark (in blue) positioned at the
outside of the nucleus. Low-mass nuclei show various unique shapes: protons and neutrons
form a straight line.

Note the extended Helium-4 geometry and the tetrahedron shape of Helium-3, as well
as the flat, triangular Deuterium shape, vs the round Tritium shape .
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Atomic (Mass/A-1) | largest percentage
isotope | n | p mass A *1000 distance | 2*std (%)
neutron 0| 1] 1.008665 1 8.665 0.530 0.000 0.0
proton 1|0 | 1.007825 1 7.825 0.660 0.002 0.3

deuterium | 1 | 1 | 2.014102 2 7.051 0.637 0.000 0.0
tritium 1] 2| 3.016049 3 5.350 0.784 0.000 0.1
helium3 21| 3.016029 3 5.343 1.011 0.000 0.0
helium4 22| 4.002603 4 0.651 1.268 0.000 0.0
lithium6 | 3 | 3 | 6.015123 6 2.520 1.185 0.061 5.1
lithium?7 | 3 | 4 | 7.016003 7 2.286 1.131 0.000 0.0
berylium9 | 4 | 5 | 9.012183 9 1.354 1.341 0.000 0.0
boron10 5| 5] 10.012937 | 10 1.294 1.466 0.000 0.0
boronll 5| 6| 11.009305 | 11 0.845 1.407 0.010 0.7
carbonl2 | 6 | 6 | 12.000000 | 12 0.000 1.399 0.020 1.4

Table 6.1: Relative atomic masses (to Carbon-12) of various light isotopes, with A = sum of
neutrons (n) and protons (p) [92]. The distance is the largest distance between any quark
in a given isotope. We exucted 9 simulations per isotope with varying initial conditions for
quark positions and velocities, with r; = 0.5 fm and glue = 1.0GeV/ fm. Std represents the
standard deviation of the distance for the simulations, and '%’ is the percentage of 2*std/ (largest
distance), as an indicator of the repeatability of the simulation results.

(Mass/A—1)%1000 vs atomic number (A) | (Mass/A—1)x1000 vs longest quark distance, rq3 = 0.5 glue= 1.0
10 : : 10
neutron q
e neutron helium4
8| e proton till carbon12 8 proton °
[—3 . =3 .
S ® deuterium S deuterium
S = . 9
A 6 tritium A 6 helium3 ..
I . 1
< helium3 < tritium
~ ~
2 4 Z 4 °
S lithiumé =
& . e =S I
2 ® lithium? : 2 till carbon12
o o
0 - 0
0 2 4 6 8 10 12 0.4 0.6 0.8 1.0 1.2 14 1.6
A largest quark distance (fm)
(a) Experimental relative atomic mass (b) Simulation results of the largest inter-quark
(mass/A -1) * 1000 as function of distance vs relative atomic mass (mass/A -1)*1000
atomic number A [92]. for various low-A isotopes, for r; = 0.5 fm and
Note the low mass value for Helium-4. glue = 1.0 GeV/fm. Note the large value of the

largest quark distance for Helium-4.

Figure 6.5: Relative atomic mass for various light elements: experimental and simulated results.
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Infroduction

The origin of inertia has been subject of many debates in physics (see [18, 55] for (historic)
reviews)!. Starting with Newton’s ’absolute space’ as reference for acceleration, many physicists
were quick to doubt anything that can act (=cause an inertial force) but cannot be acted upon.
However, Newton’s famous thought experiment on the rotating water bucket [18, 70], see fig. 7.1,
clearly showed that only rotation, relative to ’absolute space’ results in locally observable facts.

Newton’s bucket experiments

) rotation of bucket, not of water:
no rotation of bucket, nor water: water surface is flat
water surface is flat
equal rotation of bucket and water: rotation of water, not of bucket:
water surface is curved water surface is curved
b
— ~—

Figure 7.1: Newton’s water bucket thought experiment, proving - to Newton - the existence of
absolute space, as acting medium. The water shape only changes when the water is rotating
relative to absolute space, and is not influenced by the rotation state relative to the bucket.

Mach replaced 'absolute space’ by the 'distant stars’ as source for inertia, without indicating
an interaction mechanism [18, 66, 69, 70]. The instantaneous 'action at a distance’ did not fit
well into Special Relativity, which is based on a finite speed of interaction. The equivalence
principle [66, 69, 70] postulated the equality of inertial and gravitational mass. In 1953, Sciama

1 This chapter is an extended and reworked version of [13].
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Fg Gravitational interaction force between particle and observer (= 3D vector)
Eg Bg | field vectors to arrive at the interaction force vector
7 position of gravity field generating particle @7} compared to observer o5, in
direction particle to observer: 7 = Top; — rp7; . For 74,5 = 0: observer in center.
U d | velocity U = drpar;/dtand acceleration d@ = d/dt vectors of particle relative to
the observer
r v | vector norm of 7 and U

c velocity of the expansion of gravity in vacuum
s r-(Fev)l/c
G Gravitational constant = 6.67 x 10" m3 kg=!s72

myps | gravitational mass of the static observer, located at the origin (x, y,z) = (0,0, 0)
Mpary | gravitational mass of the field generating, moving, particle
o % represent the vector dot product and vector cross product

Table 7.1: Explanation of terms in Eq. (7.1).

[37] proposed an explanation for inertia in a steady-state universe model, based on an anal-
ogy between gravity and the electro-magnetic field theory. However, the steady-state universe
model is not in accordance with the observation of the Hubble expansion of the universe [69, 70].

In this chapter we will pursue the origin of inertia further, assuming gravity as the interac-
tion mechanism. First we evaluate the origins of inertia in a steady state universe model and
will reproduce the results of Sciama in a more explicit form, including mass dilation. Then we
will study the Hubble expanding universe. We will start from the linearized General Relativity
equations in the weak field, low velocity approximation and later propose a more generalized
approach.

Gravitational Liénard-Wiechert Force

As indicated in §3.6, the tensor equations describing General Relativity [53, page 109] can be
simplified to linear differential equations resembling the Maxwell-equations [48, 18, 65], [70,
§15.5] when only low mass densities and low velocities are considered. The Maxwell equations
describe (in Special Relativity) the electro-dynamical field of a charged particle in 3-dimensions,
assuming a finite field propagation velocity. These linear differential equations can be re-
formulated for gravity as the (retarded) Liénard-Wiechert fields [64, 69], as discussed in §4.9:

Eg = —myps (Eg + U+ By) (7.1)
Eg= (GMpar/8°) (L= (IO F=rDlc) + F* ((F—rdlc)xd)/c?)
Eg = F*Eg/(rc)

For details of the orientation of the coordinates in Eq. (7.1), see fig. 3.4b. The observer (mass) is
at the center. The formula abbreviations are given in table 7.1. The static attractive Newton law
of gravity re-appears, under the conditions # = 0 and @ = 0. Eq. (7.1) is written in an addition
form for mpq;¢, allowing integration over all masses under consideration.

Inspired by Sciama [37], we will first evaluate the consequences of Eq. (7.1), for a slow moving
(v/c <« 1) observer mass (1m,y;) in a static universe. We assume a constant (low) mass density
p throughout the universe (cosmological principle). Under these assumptions, the usage of
linearized General Relativity is permitted, and we can compute the total gravitational interaction
of the universe by integrating Eq. (7.1) over all masses of the entire universe.

all mass

F§' = dFg (7.2)
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Inertia from static universe

Low velocity inertia

In a static, uniform, universe model, for a slow moving observer, the condition v/c <« 1) is
fulfilled. Under these conditions Eq. (7.1) can be simplified further, to:

Fy = — mops (Eg + U % Bg) = — Mops (Eg + (3/¢) % ((F/T) x Eg)) (7.3)

= —mepsEg = _Gmobs(mpart/r3)(?+ T x (?*Zi)/cz)

Note that the term involving Eg has dropped out of the equations due to v/c <« 1 - see also
appendix E. We now start our evaluations of a uniform static universe: a sphere with the slow
moving observer in its center. When the observer is moving in the static universe, it appears
as if all particles of the universe are instantaneously counter moving, see fig. 7.2a. Note that
this is not a violation of Special Relativity, as the observer moves in the pre-existing retarded
Liénard-Wiechert field.

(a) When the observer moves: the universe ap- (b) When the observer accelerates: the universe
pears to instantaneously counter move. appears to instantaneously counter accelerate.

Figure 7.2: Impact of observation of movement status of the static universe, depends on the
movement of the observer.

Now we take a full integration of Eq. (7.2) using Eq. (7.3) and @ = 0, over a sphere in spherical
co-ordinates: (x, y,2) = (r Cos[¢] Sin[0], r Sin[¢] Sin[0], r Cos[0]) (see fig. C.1a in appendix C)
and replace mpq;; in a uniform universe (p = po) by the integration quantity,

dmparlr] = poSinl0] r? d¢dodr (7.4)

This results in a zero net force, which means that a moving observer experiences no interaction
of the entire static universe (for v/c « 1). This means that any object in slow uniform motion,
remains in uniform motion, which is Newtons first law.
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Now we compute the interaction of an accelerated, uniform, static universe with the mass of the
observer in the center [37], see fig. 7.2b. We execute the integration of Eq. (7.2) using Eq. (7.3) for
v/c < 1and with @ # 0 [85]:

—

Tmax [T [27 N
Fg = —myps f f f po 12 Sin(0] Eg dpdodr (7.5)
0 0 0

T'max

:mobsa’(8ﬂp0Gl302)f rdr
0

= Mopsd (4P G /3) 12,1 ¢

The resulting force of the accelerated universe is proportional to m,,s; and d, in the direction of
the acceleration, which means that the mass of the observer attempts to join the acceleration of
the universe. It resists the acceleration initiated by an external force, which is called inertia!

The upper integration limit r,,,, can be derived from a side step to the Hubble expanding
universe. At 74y, it is assumed that the masses of universe move away at the maximum allow-
able velocity c, and consequentially have negligible interaction. Starting from the linear Hubble
expansion formula v = Hr, the integration limit r,,,, can be found to equal c/H (which we
label as ryyuppie)- Eq. (7.5) reduces to:

Fy = mops @(4mpo G /3 H?) (7.6)

Identifying Eq. (7.6) as Newtons 2nd aw F = mad, (and dropping the 0 in pg) we find that
(4p G /3 H?) must be close to unity. From WMAP and Planck data [3, 89, 39] we know that the
curvature of space is 'flat’ to within 0.4%. Cosmological space flatness leads, in the General
Relativity Friedman model [65, 70], to the condition: Q,; = 8wp G/3 H? =1. Therefore we find
that 47p G /3 H? is in the order of unity.

High velocity inertia

For mathematical simplicity we first
study the static universe, with one mov-
ing, accelerated mass. For the gravi-
tational force impact of the static uni-
verse on a moving, accelerated mass we
use Eq. (7.1) and (7.2), with a constant
mass density p in similar was as done
in §7.3.1. Using spherical space coor- moving &
dinates, X = (x,y,2) = (r Cos[¢] Sin[6], accelerated
r Sin[¢] Sinlf], r Cos[0]), see 2-D image stal?c?crtll,lcrlﬁlclar:'se
in fig. 7.3. Without loss of generality, we

take the velocity U = (0, 0, v,) and accel-
eration d = (ay, ay, az) as equal for all
masses of the universe, as perceived by
the observer mass at coordinate
Xx=1(0,0,0).

Figure 7.3: accelerated, moving particle (2D), in
a static, spherical mass filled, universe.
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For a moving, accelerated mass, with ¥ = (0,0, v;), @ = (ay, ay, az), in a static universe, we
need to evaluate the total gravitational Liénard-Wiechert force given by (see §7.2):

—_— all masses _

tor __ %
Fg = Fg dmass (7.7)

where fg represents the gravitational force as given by Eq. (7.1), divided by m, 4. Also, for later
use, we define E; = Eg/mpmt and Bg; = Eg/mpmt.

The integration over all moving masses requires special attention. As discussed in §4.7, we
find that the amount of the moving mass itself is changed, according to the relativistic Doppler
law. Therefore the term d mass in Eq (7.7) amounts to:

V1-(v,/c)? V1-(vy/c)?

1+ (v,/c)Cos[0] 1+ (v;/c)Cos[0]

dmass = p dxdydz = p r2Sinl0] dpdOdr (7.8)
The gravitational force impact of a moving, accelerated mass is given by the Liénard-Wiechert

force, Eq (7.1). Therefore the total integration to be evaluated amounts to (see appendix C) [85] :

— c/H pn p2n R R /1—(0 /6)2
Flot — _ f ff E* + D % B* £ 2Sinl0) dpdod 7.9
g = Mobs | Jo fy B vV Be)Pm  Seastgy T SO dedbdr(7.9)

4np G ( Qy ay a; — Hv, (1-(vy/c)?)
SH2 /T, 10? V- =l

Apart from the factor containing H v, which we will discuss shortly, Eq. (7.9) describes the (grav-
ity induced) force that is needed to accelerate a moving particle. We note that 47 p G/(3 H?) = 1,
as shown in §7.3.1. The inertial force increases compared to a non-moving particle: mass di-
lation. The mass dilation functions are known from Special Relativity via the gamma function
ylv,/cl = 1/4/1—(v,/¢)?, and named 'transverse’ and 'longitudinal’ mass [53, 30, 69, 70] af-
ter multiplication with the (static) gravitational mass m,; . The relativistic mechanics force
equation is then given by (see also [69, page 82], [70, page 125], [22, 104] ) :

= Mpps

Flv,,d] = myps (y[vzlc]Sﬁn + vlv,/c] a,) = Mopsd (ylv,/clD)/dt (7.10)

where d represents the acceleration in the direction parallel to the velocity vector ¥ and a}.
indicates the acceleration perpendicular to the velocity. It must be noted that m,}; represents
the static gravitational mass, which therefore equals the (static - low velocity) inertial mass,
as found by E6tvos [63, 69, 70]! This is labeled as the 'weak’ equivalence principle. The Mach
principle in relativistic form appears, with gravity as acting force. The quantitiy m,sy[v/cl U is
also known as the 'relativistic momentum’ [69, §3.2], [70, §6.2].

The energy (E) change of a moving mass is given as dE = (F[v,, d] * dX) which implies that
dE = (Flvg,dl-dX/dt)dt = (Flv,, d]+ v)dt. Following integration, it can be shown [64, §9],

(66, §17], [69, §3.3], that the energy content of a - gravitational - mass (m) is given by E = mc?.

The term proportional to H v, in Eq. (7.9) is a new factor, which is rather small as the value
for 1/H = 14 x 10° years (also known as 'age of the universe’). Therefore this term only has
impact on extremely large timescales. It is interesting to note that, without external forces, in
this static universe model, an initial velocity will increase (as for v,/c <« 1,wefind a, = dv,/dt
leading to: dv,/dt — Hv, =0 = v,(t) = vy et A further line of study could be to verify this
property for a Hubble expanding universe. Could this be related to an accelerating expanding
universe [94]? A further study of this aspect to the early universe, and thus large values of H,
might show a link to the early inflation epoch of the universe [65, 96, 70].
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A further notice is that Newton’s first law ("An object remains in uniform motion, if no force is
employed.") is retrieved from Eq. (7.9), when neglecting the term with H v,. We find that for:
ﬁg=6 = d=0 = ¥=1j.

Critique to the static model

Sofar, we assumed a finite spherical universe
with the observer in its center. However, when
evaluating the gravitational impact of the uni-
verse, assuming the observer is not in its cen-

ter (see fig. 7.4)%, it becomes clear that the ex- LS
perienced inertial reaction must be asymmetric.

This asymmetry has not been observed in prac- y-axis
tice in E6tvos [63] type experiments, and would X-axis

be counter intuitive: its absence would imply
(in the static universe model) that the earth has
a privileged position in the center of the uni-
Verse.

A solution to this dilemma can be found by con-
sidering the Hubble expansion of the universe.
This requires the full generalization of the Liénard-
Wiechert equations (7.3) for high velocities, as in-
dicated in §4.9.

Figure 7.4: When the observer is not in
the center of the static universe, asym-
metrical inertia results.

Expanding universe

velocity distribution

Prior to the study of the gravitational impact of the expanding universe on an accelerated mass,
we need to establish its mass-velocity distribution for the integration according
Eq. (7.2). It was realized by Hubble that

objects move away from each other in ra- da

dial direction [69, 70] (see fig. 7.5). The
velocity increases linearly as function of
distance, for small values of the result-
ing velocity compared to c. Our interest
is in the interaction between particles at
large distances, where the condition v «
¢ does not hold. This requires relativis-
tic velocity addition, as given in §3.7 [64,
69]:

[ | D1+ field v

v N,V = ——m——— generating

new(¥1» V2 1+ (v1.v2) / ¢? particles

In order to compute the relativistic Hubble

law, we perform a thought experiment with Figure 7.5: Hubble expansion of the uni-
many observers in a row, separated by equal verse. Particles move away from the (slowly
distances ( Argyppie, With 0 < A < 1), see moving) observer in the center, in radial di-

fig. 7.6. rection.
2

or take incomplete integration limits for Eq. (7.5), eg. integrate 8 from0to 7 — §6.
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Observers at 0,1,2,...i,i+1,i+2... A rHubble 0<Ax1
AN R R S oo AN N N
0 1 2 i i+1 i+2
v—Hubble(r) » > > —> —»

Figure 7.6: Hubble expansion, velocity increase per length increment.

Starting at the origin, we assume each observer (labeled i) to move with a Hubble expansion
velocity of v = HArguppie = Ac, with respect to observer i — 1. To compute the velocity of
observer i, compared to the origin, labeled as v;, we utilize the relativistic velocity addition in a
recursive way, and find it to numerically equal v; = ¢ Tanhli A]. Thus, the velocity formula for
Hubble expansion, as observed by a (static) observer in the center, is:

-

- - r
Urubbie 7] = cTanhlr /I rgyppiel (;) (7.11)

The behavior of this function for r < rg,ppie corresponds to the original linear Hubble expan-
sion law, see fig. 7.7a.

low velocity inertia

In the Hubble expanding universe, we now evaluate the gravitational impact on an accelerated
mass, which co-moves with the masses in its vicinity. This means that the velocity distribution
of the masses that it observes from the universe is only radial outwards, as shown in fig. 7.5,
with magnitude given by Eq. (7.11). When evaluating the full force integral, Eq. (7.7), we need to
consider the Doppler mass contraction, as per Eq. (7.8), which becomes for the radial outward
movement (6 =0):

1- /¢)? 1- /

dmass = o (VHubble C) dxdydz =p dedydz (7_12)
1 + (VHubb1e! €) 1 + (VHubble! €)

This is in-line with the relativistic formula for longitudinal frequency Doppler effect [53, page 56].

Combining Eq. (7.11) and (7.12), and expressing in spherical coordinates, assuming a uniform

mass density of the universe?, leads to:

dmass = p e~ THubble 12 Gip10) dpdedr (7.13)

Now we can calculate the total gravitational force of a (slow moving) accelerated particle in an
infinite Hubble expanding universe, see fig. 7.5. We use spherical coordinates for the integration,
with infinity as upper limit for the radius. The acceleration is given as ad = (ay, ay,az). We
define the help variable x = r/ ry,ppie to evaluate Eq. (7.7) leading to (more details are given in
appendix D):

— o T p2T N
Fgwt:—mobs/o fofo (Ej + D *Bg)p e "'wbie > Sinl] dpdf dr (7.14)

4npG © _ L_40npG
= mObSW(ax’ay’aZ)L xe ¥ (1+e?)dx = Mops d 27 12

It is remarkable that an infinitely sized universe gives a finite result on inertia. An analysis of
the convergence of Eq. (7.14), shows that the contributions of masses at distances larger than
THubble are dominant, as shown in fig. 7.7b. This means that the universe is infinitely filled with
expanding mass, see fig. 7.8a.

3 which it has at length scales > 0.01 THubble [311.
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| Hubble velocity / ¢ vs Hubble radius | Hubble force Integrand and integral |
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(a) Relativistic Hubble expansion: Tanh function (b) Relative contribution to inertia vs distance:
most inertia is generated at distances larger than
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Figure 7.7: Hubble expansion impact.

From Eq. (7.14) it is clear that the inertial force is proportional to the gravitational mass of the
accelerated observer (m,p;) and the acceleration. It gives equality of inertial mass and gravita-
tional mass, as was observed by E6tvos[63] and others [43]. This equality is often labeled as the
(weak) equivalence principle [103], see also appendix A. For General Relativity the equivalence
principle is a starting postulate (=assumption), where here we find it as result from our theory.

c) JADES-GS-z13-0
7=13.20

L

(b) James Webb [90] image of JADES-GS-z13-0:

with a z-shift of =13.2, being one of the most

distant galaxy discovered sofar, at r/rg,ppie =
(a) Infinitely mass filled expanding Hubble universe. 2.6 according to Eq. (7.26).

Figure 7.8: Some impressions of the infinite expanding universe.

’Small’ local deviations from the average mass density p [31] have no effect on the overall grav-
itational force on an accelerated observer. Also moving the observer to another position in
the expanding universe does not change the analysis (assuming the observer co-moves, as per
Hubble law, with the nearby masses). The asymmetry issue of the finite, static universe does not
hold in an infinite, expanding universe. The asymmetry argument will be furher discussed in
appendix F.
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Note that we have performed these calculations based on Euclidean 3D-space, without in-
trinsic space curvature. The infinite homogeneity of the universe already implies the model
universe without intrinsic curvature, as any local curvature would violate the homogeneity of
the universe (= cosmological principle).

High velocity inertia

When evaluating the high velocity gravitational force in the Hubble expanding universe, special
attention is needed for the calculation of the velocity of the gravitating masses of the universe as
observed by the accelerated, fast moving particle. This velocity is the 3-D relativistic velocity
addition [as given in §3.7.2] of the original velocity of the observer particle v, = (0,0, v;) (with
respect to the average of nearby masses (r < 0.01 rg,ppie) Of the expanding universe) and the
Hubble velocity of the masses of the universe vz3 = ¢ (7/r) Tanhr[r/ rgyppie] - An impression
of the resulting velocity distribution of the universe, as perceived by the moving (accelerated)
particle, located at position (x, y, z) = (0,0,0), is given in fig. 7.9.

From this velocity distribution we can compute the mass Doppler impact as given by Eq. (7.8),
which now needs to be generalized as [69, page 109] (with m) the static gravitational mass):

V1= (v/c)?

mass[v, r] = mom (715)

An example of the resulting gravitational mass Doppler effect ( %[Oﬁf] ) is given in fig. 7.10.

Now we have all components to evaluate the total gravitational force as expressed in the first
line of Eq. (7.9). For an infinitely sized (r — oo), homogeneous (p = po) universe the (inertial)
gravitational force can be reformulated to:

2n _) _
Floi = mohspof ff (B: + 5% By YW WY o gint) dpdodr  (7.16)

1-(v.7)/(rc)

An analytical evaluation of Eq. (7.16) is a task yet to be resolved. When analyzing the integrand
only, we find:

1. Force at constant velocity : is found in the direction of the movement, leading to addi-
tional acceleration, as discussed at the end of §7.3.2

2. Extra force under acceleration : An acceleration in z- (or x-) direction results in a force
(on top of the constant velocity force), purely in the direction of acceleration.

In short: Solving Eq. (7.16) is key to completion of the 'inertia-by-gravity’ study.
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Figure 7.9: Velocity of the masses in the Hubble expanding universe as experienced by an
(upwards) moving particle with velocity v,, located at (x, y, z) = (0,0,0), for various particle
velocities, represented in 2D. The x- and z-axis (with y = 0) are scaled to rgypp;e = ¢/ H. The
top-left image (for v,/c =0) is a two-dimensional representation of fig. 7.7a. The bottom left
graph (for v,/c =0.75) gives a zero velocity impression (by the fast moving observer particle) for
amass located at (x, z) /rgyuppie = (0, 1), as there the (receeding) Hubble velocity equals the
(approaching) velocity of the observer particle, see fig. 7.7a.

2
Doppler 1

z [ r_Hubble

-1.0 -0.5 0.0 0.5 1.0
x / r_Hubble

Figure 7.10: Mass Doppler effect, for v, = 0.75¢ in a Hubble expanding universe. We recog-
nize the increase near (x,z)/ rguppie = (0, 0) for positvie z-values (=approaching gravitating
masses), and the decrease for negative z-values, as the gravitating masses receed from the
observer particle. At (x,z)/ rgyuppie = (0, 1), we find from the bottom left graph of fig. 7.9, that
Ui,/ ¢ = 0 and thus, from Eq. (7.15), that the mass Doppler effect is absent (= equals unity).
Further we find an (exponential) decrease for large distances from the observer particle.
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Gravitational impact of G

We have identified inertia as a gravitational force, proportional to G (see Eq. (7.9) ). For an
orbiting object around a central mass (M) we find, for non-relativistic velocities, Newton’s law.
From Egq. (7.1) and Eq. (7.2) - with position of the central mass @7} and acceleration? defintions
from table 7.1 - we find the summation of the gravitational force of the central mass and the
inertial force of the - Hubble expanding - universe (see Eq. (7.14) :

e pari =0 (7.17)

r2

Flot _ Mops MG (rpart) 407 p mops G
§ - T

More generally, when only gravitational effects are present, Eq. (7.1) learns that these effects are
proportional to G. Therefore G drops out of the equation. The actual value (or sign!) of G is not
an orbit influencing factor! This implies that it is inconsequential for astronomical phenomena,
such as star or planet formation whether we call gravity attractive or repulsive. The net effect
of 2 gravitating particles (initially at rest, as part of the expanding universe) remains the same:
reduction of their distance over time. As such gravity will always be experienced as attractive!

We studied the origins of gravity in chapter 4 and identified the electro-dynamical forces of
moving quarks as root cause. This leads to the value of G, as expressed by Eqs. (4.7) and (4.8),
requiring quark velocities, inside protons and neutrons, near the speed of light. This is ex-
pected from quantum mechanical considerations as given in chapter §3.4.2. Thus our inertia
assessment ('due to gravity’), leading to freedom of sign of G, allows consistency of the the
quark-gravity model.

Planetary motion - Mach

Another computation is the slow motion orbit® (v/c <« 1) of the observer around a large central
mass comparable to a planetary motion, where mg,s/ M < 1. Assuming movement in only
(x,y) plane (z=0), we find from Eq. (7.17) (dropping mi,p;):

(40mpG/27H*) ay + GMCos[pl /12, = 0 (7.18)
40mpG/27H*) ay + GM Sinl¢] /15, =0

with: r;, as distance from observer to the central mass and a = (ay, ay,0). Equations (7.18) allow
a circular orbit (as well as an elliptical orbit), as x[t] = r,, Coslw t], y[t] = r, Sinlw t], resulting
in the Kepler law:

w*rd =27MH?/ (407 p) (7.19)

Equation (7.19) is an explicit form of Mach'’s principle: planetary movements are determined by
the mass distribution of the universe, with gravity as interaction.

The realization that inertia is the result of the gravitational impact of all masses in the infinite
expanding universe, ends the debate on "absolute space’ (as introduced by Newton, following
his famous rotating water bucket thought experiment [18, 70], see fig. 7.1 - criticized by Mach).
"Absolute space’ in itself does not exist. Everything needs to be evaluated relative to everything
else, but... our (only available) universe provides an absolute inertial reference frame®, through
the gravitational interaction with all masses of the infinite expanding universe.

4 The central mass has the same acceleration as the average of other masses of the universe (which create
inertia).

5 A more extended treatment of orbits will be given in chapter 8.

6 In appendix A, we revisit the equivalence principle.
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Evolution of the universe

We have shown the expanding universe to be infinitely large. This means that it will always be
infinitely large, but also that it has always been infinitely large. In this paragraph we evaluate the
time evolution of a small part of the universe. Sofar we have assumed a constant value for the

(a) Asmall partin the infinitely mass filled expand- (b) Elliptical orbit around central mass.
ing Hubble universe.

Figure 7.11: Hubble expansion of small sphere & elliptical planet orbit.

Hubble expansion factor H. However, when studying a small expanding sphere of r << rguppie
with fixed mass M, we realize that the condition of unity in Eq.(7.6) (static universe model) and
(7.14) (Hubble expanding universe model) implies a change in mass density p, even for constant
H. We now study the time evolution of the radius r/¢/ in which the mass M is contained, with
assumed homogeneous mass density p. We will assume G to be a universal constant (indicating
that the gravitational force between two objects is a constant) and assume (see Eq. (7.14) )
40mp G/27 H? = 1 to be valid over time, leading to constancy of the F = ma formula. We
rewrite H as:

Htl = (drldt)lr = (dridt)!r =+/40mp G /27 (7.20)

and identify the mass M of the sphere under study as constant, in flat space-time (M = 4/37w p r3).
With this, we re-arrange Eq. (7.20) (and use for s.impliﬁcation7 v40/27 =~ v4/3) to arrive at:

(dridt)lr=VMGI/r3 = drldt-vMGI/r=0 (7.21)

This equals the Einstein-deSitter equation for the flat - mass filled - universe [70, page 401], [69,
§9.4], [65, §15.5] which can be solved as:

rlt] = ro (1 + v/371Gpg 1)*'3 (7.22)

where ry and pg indicate the initial size and initial mass density of the small part of the infinite
universe. Eq. (7.22) can be further simplified re-using 47p G/3 H? = 1 and introducing Hy as
initial Hubble expansion coefficient, to arrive at:

1
ritl = ro(1+3/2Hyt)*® = dridt = Hyro - 5HO2 rot (7.23)

7 It must be noted that if we replace the factor 4/3 in 47p G/3 H = 1 by any other number (such as 8/3, to
arrive at the Friedmann ’critical mass density’ condition [65, 69, 70]), the result of Eq. (7.23) remains identical.
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For small timescales compared to the initial Hubble time scale (Hy t « 1), the linear Hubble
expansion law (v = H ry) is regained, by series expansion. Re-inserting Eq. (7.23) in Eq. (7.20) to
find the evolution of the Hubble constant over time, we find:

2 Hy

Hif = —2
2+3Hyt

(7.24)

Thus the Hubble expansion coefficient will decrease over time.

Redshift

It was shown that the model of choice for the universe at large is an expanding model of
homogeneous mass density and infinite size, without intrinsic space curvature (as deduced from
WMAP and Planck data [3, 89, 39]). The infinite homogeneity implies that no net gravitational
force exists when moving from one place to another. Therefore observed red shifts from far away
galaxies are not due to gravitational effects, but originate purely from velocity-Doppler effects,
due to Hubble expansion. For a pure motion away from the observer, the red shift z is given in
§3.2 by [69, 70]:

z=V1+vic/Vi-vic—-1 (7.25)
With the relativistic Hubble velocity Eq. (7.11), the redshift formula simplifies to:
Z[r] — er/rHubble -1 (7.26)

Therefore, it can be expected that with the ever increasing quality of observation techniques, we
will find stars with ever increasing red-shifts z[r]. Examples from infra-red studies by the James
Webb telescope are given in fig. 7.8b and 7.12.

The Cosmic Microwave Background (CMB) radiation is considered to have a z-shift of = 1100
[71], which leads through Eq. (7.26), to a photon observable universe with a radius of r;‘;’ll(l; % Z S€ ~
7 ruubbie- Note: the photon radius of the universe is a result of the Big Bang theory, where
photons could not penetrate the early plasma (for the first 380.000 years [59, page 149], [71] ).
However, gravitational forces can penetrate a plasma, therefore no length restrictions exist for

the maximum radius of the universe (for gravitational forces, leading to inertia), see also fig. 7.7b.

Conclusions

In this chapter, it is demonstrated that inertia is the result of the gravitational interaction of
all masses of the, infinitely sized, expanding universe. Therefore, the so-called inertial and
gravitational masses are equal. The Mach principle was thus made explicit. The value and sign
of the gravitational constant G are of no consequence on astronomical scale.

We were able to show the well known inertial mass dilation formula - in Eq. (7.9) - for a static
universe model (which is one way [53, page 63], [69, pages 82-83] to prove E = mc?). For a
Hubble expanding universe, this is still to be shown, by solving Eq. (7.16).

We found that the magnitude of quark velocities for quark-gravity (as discussed in chapter
4) isin the order of the speed of light as was expected from quantum-mechanical reasons, as
given in §3.4.2.
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Figure 7.12:
NASA James Webb telescope [90] deep field image,
containing the z-shift = 14.3 galaxy JADES-GS-z14-0,
at a distance r from earth, with r/rp,pp1e = 2.7 according to Eq. (7.26) .
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Introduction

Orbital motion is an important topic for it describes the motion of the planets and at larger scale
the galaxies and their interactions. As an example the orbits of stars around the massive black
hole in the center of our galaxy (Sagittarius A) have been studied extensively, as seen in fig. 8.1.

Figure 8.1: ESO/L. Cal¢ada/spaceengine.org [78]:
Observed orbits of stars around Sagittarius A, in the center of our galaxy.
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Therefore, we will study orbital motion here, starting with one observer with mass (m,p;)
orbiting a large central mass (Mjp). When an observer mass is only influenced by gravitational
forces, it is clear that the vector summation of all gravitational forces is zero. The summation
over all gravitational forces (ﬁg) due to all masses of the universe and the central mass can be
expressed - as also done in Eq. (7.2) - by means of:

— all mass central mass restof universe N
Fo = dFy :f d Fq +f dFg =0 (8.1)

where ﬁg is expressed as the Liénard-Wiechert force, as given by Eq. (7.1) and Eq.(7.7), where the
Doppler function as expressed by Eq. (7.15), is taken into account for the central gravitating mass.

The (net zero) total gravitational force is proportional to m,ps G and thus these factors fall
out of the equations. This proves (once again) the (weak) equivalance principle ("a mass moves
independently of its magntitude!, through a fixed gravitational field’ and ’inertial mass is due
to gravitational mass’). As already found in §7.5 the sign and magnitude of the gravitational
constant G are not orbit determining factors.

As seen in §7.3.2 the gravitational force as perceived by the observer (=orbiting mass) amounts
to:

central mass V1- (U/C)Z - . =,
f ng:—GmobsMom(Eg+U*Bg) (8.2)

The (inertial) impact of the 'rest—o f—universe’ termin Eq. (8.1) has been discussed in chapter
7. The outcome coincides with the Special Relativity prediction of transverse’ and 'longitudinal’
mass impact. We use for the moving particle as velocity U = (vx, vy, ;) and acceleration
d = (ay, ay, a;), with acceleration split into g and a, (parallel and perpendicular to velocity).
Therefore, the inertial forces on a mass, in free motion, is given by Eq. (7.10) [69, page 82], [70,
page 125], [22, 104]:

1Ba +ylviclal) = mopsd (ylv/clB)Idt  (8.3)

restof universe
f dFg = myps (ylvic

with y[v/c] = 1/v1 - (v/c)?.

In this chapter we study orbit theory. We start in a historical order: from a Newtonian analysis
via a General Relativity summary to a quark-gravity analysis of gravitational orbits. This allows
to see commonality and differences in approach and results.

1 More precisely: the moving mass should be sufficiently small compared to the mass that generates the fixed’

gravitational field. Any falling object on earth (like a Newtonian apple [68, §1.1]) complies to this constraint.



8.2 Newtonian gravity orbit: 1 moving body problem 61

Newtonian gravity orbit: 1 moving body problem

The evaluation of the orbit of an observer with mass (m,3s) around a central mass (Mj) in
Newtonian physics is well studied [70, pages 241-242], [4, 75], based on cylindrical coordinates
rrt] = (x,,2) = (rCosl¢], r Sin[¢p], z). The Newtonian equations of motion are known as:
Mops @+ GMomgps 7/ 172 =0 - see also Eq. (7.17)) . Here we assumed that My > m,,s and thus
that the central large mass does not move. The Newtonian force equations can be rewritten
in cylindrical coordinates, using the cylindrical coordinates equations for acceleration: a, =
#—r¢? and ap = rd+2i¢p, with ¢ = do/dt,d = d*>¢p/dt®,+ = dr/dt and ¥ = d?r/dt>.
Knowing that we start from an orbit with initially z =0 & v, = 0, we find, expressed in cylindrical
coordinates (Fy, Fyp, F;):

tor _ 1 ” 2y _
F.™ = GM) Mobs 3 + Mops (F—1p") =0 (8.4)
Fy’' = mops (r$p+27¢) =0
thot =MopsZ =0

Notably the F (Z‘” equation in Eq. (8.4) allows an important simplification [4, 75],[82, pages 68-70].

When multiplied by the radius r we arrive at r?¢ +2ri¢ = d (r’¢)/dt = 0 and thus: r?¢ = h,

with h being a new orbital constant. This allows a change of variables in the first equation of

Eq. (8.4) from time (¢) to angular position (¢), using (/) = h/r? and 7 = g—(z % = g—; (hir?).
Then the F°! equation in Eq. (8.4) becomes (dropping the mass of the orbiting object mp;:

GM, . h*

2 T

=0 (8.5)

We switch to a new orbit variable u(¢p(£)) = 1/r (), whichleads to [75]: 7 = —u™? 1t = —u"?¢pu’ =
—hu' and ¥ = —h2u?u", where the ’ and " indicate (single and double) differentiation to ¢.
Then Eq. (8.5) transforms to:

My

K2

where (ellipticity) e and ¢ are constants of integration. Switching back to r = 1/u, we arrive at

the elliptical orbit (Kepler’s law) with the period of revolution ( Ty, ) given in line with Eq. (7.19):
12 1(G My) 2 _ AT 4

el =17 eCosl¢p — o Ther = Gty e e

with 7,4 is the maximum of the
r(¢], being the semi-major axis of
the elliptical orbit (labeled as a), a =
Tmax = GMyl(1 — e®)h?. We find
the velocity and acceleration for the
orbit angle ¢[tf] and d¢/dt = ¢ =
hir?:

GMou?> - hvPu"-1nPiu’=0 = u"+u=GMy/h*> = u-= (1 + eCos[¢p — ¢o])(8.6)

Acceleration
Velocity

ellipse, sun as focal point
ellipticity (e), major axis (a)
x=(x,y)[0]= r[6] (cos[6].sin[6])
1161 = a(1-¢?)/(1+e Cos[6])
vel[t]=dx/df.d6/dt acc[t]=dv/df.d6/dt
0 =0[t] = dg/dt = h/r[6]>

x[9] = rig] (Cosl@], Sinlg])
v(p] = dXldt = dXld¢p ¢ = dXld¢p hir?
alpl = dv/dt = dvldp ¢ = dvldp hlr? T

with M of course also given by the New-

tonian orbit equation (7.17). Figure 8.2: Elliptical orbit around central mass,
in Newtonian gravity.

The resulting orbit, velocities and acceler-

ations are given (for an example of ellipticity) in fig. 8.2.
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Newtonian gravity orbit: 2-body problem

In the previous paragraph we calculated the orbit of a low-mass particle around a heavy (non-
moving) mass, as depicted by the condition (m,;; < My). Here we will study the orbits of 2
particles under Newtonian gravity, when their masses (m; & my) are of equal order. It is then
convenient [79, 102, 109] to define the 'Center of Mass’ (COM) of the 2 particles and we know
each mass is subject to Newtonian gravity in opposite direction. Then we find:

Xcom = (m1 X1 + mpX2) [ (my + my) (8.8)
. . Gmmy ,
mlalz—mzazzﬁ(xl—xZ)
| X1 — X2
—>

(my + mg)dszOM/dtz =mida+mody = 0

Thus the center of mass movement is independent of the gravitational forces between the 2
masses. We can thus set Xcops = 0 as center of the reference system. We now define the vector
R = Xcom — x1, and thus we have x» = Xcom — (m1/ m2) x;. When we take R = | R|, we find
the distance between the 2 masses (m; + my)/ my) R. Then we can express the Newtonian

gravity law as:

3
Gm;

(my + my)? R?

Gm1 no

R
( mlr;zmz )2 R2 B

| =

mid*R1dt* + =0 = d’Ridt*+

R

) =0 (89

This is exactly the same grav-
itational orbit equation as oc-
curred in the 1-body equa- 2—body Newtonian gravity
tions, as discussed in the pre-
vious paragraph §8.2, with el-
liptical solutions. Assuming
a non-rotational reference sys-
tem for the Center of Mass, ZgbodypNewionianiorayity
we find that the 2-body New- me/mi=3. ellipteity =01
tonian problem gives 2 syn-
chronous counter-moving ellip-
tical orbits, as depicted in the
fig. 8.3.

2 masses go around COM

The subtle impact of 1-body vs.
2-body orbits on gravitational
wave generation, will be dis-
cussed in chapter 9.

Figure 8.3: 2-body elliptical orbits around center of mass,
in Newtonian gravity.
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General Relativity orbit

Orbits in General Relativity have also been extensively studied [52, §39 & §40], [65, pages 230-
233], [66, pages 147-150], [68, pages 1110-1116], [69, pages 218-225], [70, pages 241-245], [4]
resulting in the well known perihelion shift of planets. The Newtonian equation of motion, as
given by Eq. (8.6), receives a relativistic addition, to yield:

u"+u-3

G M() 2 2 6 G M()
=GMy/h Ap= —— 8.10
2z ! ‘ - ¢ a(l-e?)c? (8.10)
where A ¢ represents the advance of the perihelion angle of the elliptical planetary orbit per
orbit, as shown? in fig. 8.4. Interestingly, the perihelion shift also occurs for small values of
ellipticity (e). Even a (near) circular orbit has a perihelion shift, which is only possible when an
angular force is present.

It is important to remark that
the General Relativity orbit as-
sessment has as one of its in-
termediate results the relation:
r2¢ = h, which is similar to the
Newtonian angular momentum
conservation.

observer

central perihelion shift

mass

Figure 8.4: Exaggerated perihelion shift of an elliptic orbit,
in General Relativity. Color shift - red to blue - shows
progress of the orbit.

2 GMy

ch

2
with exaggerated parameters for ellipticity (e) and perihelion shift intensity ( ) , also used in fig. 8.5.
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Quark-Gravity: equations of motion

Starting from Eq. (8.1), we first study a mass (Mj) in a motion around an observer. The position
is given by rpart[t] = (x[t], ylt],0), Vpart[t] = (vyltl, Vy[t] ,0), apart[t] = (axltl, ay[t] ,0),
indicating an initial flat orbit. This leads to a Liénard-Wiechert force (in gravitational form
Eq. (7.1) - see also table 7.1 ) without a z-component. Thus a flat orbit is a solution and we
continue our analysis in cylindrical co-ordinates rrt] = (r, ¢,0), by using the general equations
and its time derivatives. The gravitational force is evaluated by executing the vector calculations
of Eq. (8.2), in Cartesian co-ordinates and then switching to cylindrical co-ordinates. The force
components (radial: F, and angular Fy) are found (after an assisted calculation [85]) to be:

GMym P2+ ¢2r?
F, = (Or—z"bs) \/1—C—¢... 8.11)

clc—=A(c+i)?=d*(c+7)2c+ ) r? + p(Fp—p(c+))rd
(c+ )4

P G My mps ) 2+ p2r2
L U e T

Pric+i)* +(plc+7i) —ip)r?
(c+7i)?

(8.12)

This is the driving gravitational force for a mass in orbit. This force is balanced by the inertial
forces, as expressed in Eq. (8.3). We now need to evaluate the components of @ and 4, :

-

. (a-n)
ay = —
TTE

—

0 | =ad-d (8.13)

with || 7| representing the vector norm of the velocity (=total velocity, which is never zero in
orbital motion): || 7| = /v2 + UJZ, +v2 =1/ #2 + r2¢?, knowing v, = 0.

Now we need to derive the force equation Eq. (8.3), using Eq. (8.13).

restof universe N
f dFg = mops (YLv1* @) + y[vlar) (8.14)

- -
.

= Myps (Y[U]S (a

) . I
Bk v+vylvl(a—a)))

As the orbit can best be described in cylindrical coordinates, but the vector dot product (& 7)
and vector subtraction (d — dj) are best defined in Cartesian coordinates, we start this evalua-
tion from the position in Cartesian coordinates x[t] = r[t] (Cos[¢[t]], Sinlp[]],0). We find
the velocity v[t] = dX/dt = 7 (Cos¢], Sinlgl,0) + ¢ (-Sinlg], Cos[p], 0) and acceleration
alt) = dvldt = (i — r¢?) (Coslpl, Sinlp], 0) + (rp + 27 p) (=Sinlgl, Cosl¢gl, 0). After inser-
tion in Eq. (8.14) and expressing in cylindrical coordinates (by taking the vector dot-product with
the base vectors: e, = (Cosl¢l, Sin[¢],0), ey = (=Sin|¢], Cosl¢],0), €; = (0,0,1) ), we find
for the radial and angular coordinates of @j (r, ¢, 7, ¢, ¥, ) and @\ (r, ¢, 7, d, ¥, P):

_ FEF+§rigpr +¢r) _ pr(FF+rgr+ér)
ar= 21 g2r? a¢ = P21 r? (8.15)
0, Or@OFForeira gy L G Fhr e i

72+ p2r2 2+ @22
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Combining Eqgss. (8.1), (8.11), (8.14) and (8.15), we arrive at the 2 equations of motion to describe
the position over time of a mass (Mj) as seen by an observer (m,;) located at the origin. They
are given in cylindrical coordinates (r, ¢ with z=0) as:

ptot _ o = GMomops [ P2+ gir? (8.16)
r r2 c

cle=Nlet 2= gPc+PNRet NI+ =Pt rd
(C+ r)4

F(Fi+ @r(@r +¢r)) Gr2pi* —ipr+ it +¢r?)

o T Mpps — Myp

3 ] —
(P2 + ¢2r2) /1 - 20 (P2 + ¢2r2) /1 - 2

prot _ g = GMomops [, 2+ ¢2r?
00 =0 = 3 s

Grc+i)? +(Plc+7) —Fp)r? .\

(c+7)3
br(FF + pr(dri + dr)) . pr? — Fpr + Prr
v + Myps ¢ Prigrré 3 + MopsT(P+ ¢ or+o

—)
> . 2102 2
(’;2+¢2r2) /1_ r2+c(,[2J2r2 (72 +p2r2)\/1- %

As all forces in Eq. (8.16) are proportional to the observer mass (m,s). Therefore m,,s drops
out of the general equation of motion, thus proving the 'weak equivalence principle’. This
can already be concluded from Eq. (8.2) and (8.3). Also the gravitational constant G can be
dropped/replaced, as explained in §7.5. All forces in the equation of motion Eq. 8.16 are gravita-
tional in nature, and thus proportional to G.

Attempting to find a general analytical solution for Eq. (8.16) is beyond expectation. In the
following paragraphs, we start with various case studies:

1. §8.5.1 : Newtonian limit: impact of ¢ — co.

2. §8.5.2 : Angular momentum: using 'instantaneous positions’ vs retarded positions’ to
arrive at r>¢p = h.

3. §8.5.3 : Perihelion shift: study the (near) elliptical orbit, re-using r2 (/) = h. Compare this
solution to the General Relativity solution.
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Newtonian limit

Now we study the impact of the general equation of motion in quark-gravity Eq. (8.16), from
the condition ¢ — co. We expect to regain the Newtonian equations, as given by Eq. (8.4). The
angular force Fy 1o in Eq. (8.16) simplifies, when using 7 < ¢ and r¢ < cto:

Fy?' =0 = 8.17)
P2 o
%m‘/’c +W+
r(Fr+¢r(dpr+ )) o bi2 _ Fr 4+ b
+Myyp S<P prigr (Pr Mops F(+ ({)21’ 2r(/ﬁzr prir
(72§ vVi- (72 §2r2) V=0
o GMom
th '=0= 7r§£/0+
b (b (7 + Gr(dF +Br) + F( BT + P22 + G2 — Fdr +GFr))
721 g2r2 ¢ or(pr+¢ ¢ é b br+
f;; 2 (Pr(rpF +r)) + F(PF> + P*1r?) + pi? + dir))
_m°b3r¢+ Z;)zs = (PP P2+ P fr® + ¢i® + Gt r)
Mobs 2 2. . . P
= Mobs 4 5t (P Gy + PG+ 1)
— . i mobs(ﬂb*‘(ﬁi‘) i o .9
_mobsr¢+W(¢ r°+7°)

= Mops (Pr +27p) =0
which equals the Newtonian equation in the angular direction, as given in Eq. (8.4).

For the force component in radial direction F; ;,; we use a similar approach:

Fl°"=0 (8.18)

GMymops —— c* —22€*7% + plEp—deTr
==z Vi0 A -

+m PP+ r(dF+ér) m Pr2epr® —Fpr+pir+¢°r?)
o obs (72 + 212 V=0 obs (F2+P?r5) vV1-0
FfO[ =0 = % +
RO (i 4 Gr(@+Gr)) — — T br(2i® — Fr + Grir+ §r?
(72 + ¢212) (72 +¢?r?)
o GMoMobs | __Mobs (4551 Gy (ot + ) — r (2 — Fbr + Gir +$7r7))
r2 (72 +¢p?r?)

GMomops Mops 2.2 :2.2 s ) P I 4 3
=T Gy T r+ GHiTe — 2072+ §PErE - it — )

_ GMymygps + Mops
r2 (r2 +(j)2 rZ)

(P2 (F = ¢*r) + °r? (F — p° 1))

GMy . .,
= Mops (—5= + 7 =¢7r) =0

We recognize in Eq. (8.17) and (8.18) the Newtonian equations of motions, as given by Eq. (8.4)
and studied further in §8.2.
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The condition ¢ — oo allows a quicker simplification of the force equation (8.3). We can use
y = 9% =1 and find via Eq. (8.13) and Eq. (8.3):

restof universe .

f dFg = mops (Y[O]Bﬁn +vy[0la,) (8.19)

= Myps (C_l]l +ay) = mepsa

Angular momentum

In both Newtonian gravity and General Relativity the conservation of angular momentum is
found, as expressed by r?¢ = h. In §3.5.1 we found for a constant moving charge that the
electro-dynamical force field points towards the 'instantaneous pos1t10n of the moving charge?.
This means that the vector cross product Tinst * Fg =0. As Fg =mad =mdvi/dt, we find
Tinst * U = h. For the vector cross product with the position, only the angular part of the velocity
vector is relevant, which can be expressed as: vy = (,b r, and we thus find: 2 (,b =h.

In summary: we found that the result known from Newtonian gravity and General relativ-
ity (r?¢ = h) is also valid in quark-gravity. This result will be used in further orbit calculations,
as it gives the opportunity to eliminate ¢ & ¢ from the radial force equation Eq. (8.16).

Perihelion shift

We now study the radial force equation of Eq. (8.16), which we separate in a gravitational term

for the central mass (F¢"""*!) and the inertial effects for the 'rest-of-the-universe’ (F:"¢"i4),
We assume (c + 7) = c¢. Then we sort for orders of 1/c. We further use: v1-x =1 - x/2 and
1/v/1-x = 1 + x/2 for x < 1. Dropping terms containing 1/c% and 1/c*, we arrive at:

GMomeps |, F2+2r?
central _ 0Mobs
F; =7 1- —Q= (8.20)

clc—i)(c+ )2 —P?(c+ ) 2c+ ) r2 + p(Fp—Plc+))rd
" (c+7)*

_ GMymgps P2+ p2r2 (¢t =2¢?r? c? + Pp(Fp—pe)rd
~ 2 1- c2 ct
2, 522 2 2 2 3
GMOmobs(l_r +2r ) 24%r _¢¢/+¢ r/i‘/)
c? c3 ct

r? 2¢?
- G My mops (1 B r_2 B 5¢? r? )
r2 2¢? 2¢?
Anticipating the orbit to be a small deviation from Newtonian/Kepler ellipses, with low ellipticity,
we assume the radial velocity to be small compared to the angular velocity*. We can then neglect

i? :
the term 3 toarrive at:

Fcentral _ G My ( 5(!')2 r2 )
¢ -7 _

~

8.21
r2 2¢? (621

For the inertial effects, from Eq. (8.18), we realize that we are notably studying orbit effects
with elliptical shapes. For low ellipticities, we have =~ 0 and thus from Eq. (8.14), we find

|| ||2

3 The acceleration term in the Liénard-Wiechert force, Eq. (7.1), has negligible impact for a single gravitating
mass, as this term contains the factor 1/¢2.

4 Comparing 7 to r¢ we use Eq. (8.7) to find: 7/ r¢ = dridt/(rddp/dt) = dri(rdp) = eSinlpl/(1 + eCoslp])
with e being the orbit ellipticity.. Thus small ellipticities lead to (7 / (1 ¢) )2 < 1.
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that the parallel acceleration terms can be neglected. Therefore the perpendicular (to velocity)
acceleration term amountsto a| = (¥ —r d)z) ér. Then the total acceleration force term can
then be approximated, again using # < r¢ and ¢ = h/r?:

- . P2
— — . aL F—rd®
pirertia — pinertia — m ops ylvlel @y = Mops ——— = Myops —d) e (8.22)
2+ 12 ¢? r2¢?
1- v 1- 22
C

The radial forces as expressed in Eq. (8.21) and (8.22) are added to yield the total equation of
motion in radial direction, dropping 1, and terms containing 1/c*:

G M, 5r2¢f P —r¢? G My 6r7¢°\ . .,
(1) Y
T 27
rz(—m)+r—h/r =0

Now we proceed with the Newtonian orbit theory substitution u = 1/r[¢], as done in §8.2, with
# = —h?u?u", where " indicates double differentiation to ¢. We arrive at:

3h%u? GMy 3GMyu?
GMouz(l— =2 )—hzu W-nut=0 = u'+u= hzo_ 020 (8.24)

G M, G M,

= u"+u+3 042 = 0

c? h?
This is to be compared with the General Relativity result as given by Eq. (8.10), where we find an
identical formula, except with a negative sign for the relativistic correction term. We now study
the impact on the actual orbit. First we rewrite Eq. (8.24) into a dimensionless form, by dividing
through a (inverse length) parameter u,,, which can be chosen freely. We choose: u,, = 1/r;, =,
with r,, = GMy/ c? is half of the Schwarzschild radius, as given in §3.6 [65, 69, 70] and thus
Uy = c? /G M,. This leads to:

u" u 3GMpy , u" u 3unGMy ( u \> GM, G2M§
— o — P = |+ | — | s 2= = = (8.25)
Um  Um Uy C? Um Um c? Um U, h? c® h?
i)+ = ()
= — |+ |—|+3|—]| =
um um um Ch
Defining the new parameter w(¢] = u/u,, we find:
" 2 GMO 2
w'+w+3w = _h wlpl = uluy =rp/rlpl < 1 (8.26)
c

The condition w « 1 is valid for normal planetary orbits around stars with masses of order of
that of the sun. Now we use perturbation techniques [65, pages 230-233] (w(¢] = wy + Aw),
with Aw <« wy) starting from the Newtonian equation (as given by Eq. (8.6) and (8.7) :

GMO)2

2
o ) (I +eCos[o]) (8.27)

G M,
= wolgp] = (

LU()”+1U0= ( oh

To allow a comparison to the General Relativity orbit equation, Eq. (8.10)] we replace, in Eq.
(8.26), the factor +3 by integer n, which can be positive or negative.
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Then we find to first approximation:

n n 2 GMO 2
wy' + Aw" + wo + Aw + n(wy + Aw)” = h == (8.28)
c
n n 2 7 GMO 2
we" + wy + Aw +Aw+nw0+;myoﬁw+M= =
c
Aw" +Aw +nwi =0 =

n GM 4 2
Aw" + Aw = —n(ﬁ) (1+ eCosl¢])

A particular solution for Aw is found (inspired by the General Relativity orbit analysis, [65,
page 231], [66, page 149], [70, §11.9]) to be:

G M,
ch

4
Aw = —n( ) [1+e2(%—%Cos[2¢])+egb8in[(,b]] (8.29)

Going from the variable w = u/r,, back to variable u = 1/r, and limiting only to the ¢ cumula-
tive element in Eq. (8.29) (= the term with ¢ Sin[¢]), we find:

2 G My)\? GMp)* :
U= Wiy, _(GMO) [( - ) (1+ eCosl¢]) — n( - ) e<p5m[¢]] (8.30)
_(GM, GMo\* .
_( = )[1+eCos[¢] —n( - ) e<p5m[¢>1]

The solution for r[¢] = 1/u (which gives the perihelion shift per orbit A¢ ) is approximated,
using [65, §10.1] Cos[¢p(1—-0)] = Cos[p] + d P Sin[¢] for 6 <« 1, and re-using, from §8.2 that
the semi-major axis of the elliptical orbit (labeled as a) is given as a = G My/(1 — %) h?. We then
find:

h?1G My 211G My

ri¢]l = - Ab=-n—m—
¢ 1+ eCosl¢p(1+ n(EH)2)) ¢ a(l-e?)c2

(8.31)

As can be expected, the relativis-
tic correction term to the New-
tonian original - see Eq. (8.7) -
is of order 1/¢® and thus very
small.

central
mass

The radial function r[¢] needs
to be inserted into the position
function: rpar¢[p] =

r(¢] (Cosle], Sin[¢p], 0), which
gives the position of the central
mass (Mp), as seen by the ob-

perihelion shift
n=+3

observer

server. The observer sees the y
central mass AND the universe ﬁ
move in near elliptical orbits. x

Figure 8.5: Perihelion shift of an -extreme - elliptic orbit,
in quark-gravity. Color shift - red to blue - shows progress
of the orbit. The (exaggerated) perihelion shift is equally
large but opposite from General Raltivity - see fig 8.4.
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Now we take a step back and make some observations, which are puzzling at the moment:

property General Relativity ‘ quark-gravity
center of evaluation center mass M observer mass 1,
direction of 7 from My to mp; from m,ps to My
pre-factor 7 in orbit equation - 3 Eq. (8.10) + 3 Eq. (8.24)

Table 8.1: Orbit theory comparison General Relativity vs quark-gravity

1. vector field theory should show a small perihelion shift of correct sign: In [68, page 179],
[101, §7.2], it is shown for an example of a vector theory for gravity, that this theory fails as
it shows a perihelion shift that is only +1/6 value of the GR (=actual) value. Here we find
the opposite value of GR .

2. Linearized GR should show proper perihelion shift: General Relativity can be linearized
(for low velocities and 'small’ gravitational fields) [23], [48, pages 91-109], [65, pages 490—
492], [70, pages 335-341] (see §3.6) to reveal equations that are similar to the Maxwell-
equations. Lense-Thirring [40] derived these equations to analyze 'frame-dragging’ of
an object orbiting a central mass, in a polar orbit. However, these equations can also
be used to analyze equatorial orbits (as was done for planetary orbits in the previous
paragraphs). Under these assumptions, the first successful perihelion shift analysis was
done by Einstein [53, pages 163-164] (even before the Schwarzschild solution was known).
It can be expected that the Lense-Thirring equations can also be used to come up with
identical results. However, limited literature references are known to the author (apart
from [4, Eq. 48]) that give the proper perihelion shift equations, see also appendix E. In
fact such an analysis should result in identical results as an analysis starting from the
Liénard-Wiechert equations (as given in §8.5.3), as both mathematical representations of
the electro-dynamical fields and linearized GR are interchangeable.

Conclusions and recommendations

We have derived the orbit equations in quark-gravity. We
reproduced the orbit equations in Newtonian limit
(¢ — 00).

However we could not reproduce the perihelion shift equa- Ny o
tions. We found identical equations, with opposite sign of ’ a
the critical relativistic corrections, hinting at a reduction of
the gravitational force in quark-gravity, where an increase is
expected in General Relativity. This discrepancy gives rise to
further investigations, in future updates of the book, where
help from readers is very much appreciated.

Figure 8.6: Perihelion shift
requires further attention.
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Infroduction

Gravitational waves have been considered
[5], once it was realized that gravity could
have a finite velocity, as opposed to the New-
tonian concept of 'immediate’ impact. In-
spired by the Maxwellian equations for electro-
dynamics, Heaviside [19] proposed gravita-
tional waves, as early as 1893, followed by

Poincaré in 1905. After the definition of e
General relativity, Einstein studied gravita- R O
tional waves in 1918 [11], corrected by Ed-
dington [10]. The energy loss from gravita-
tional waves was first found theoretically, fol- Y
lowed by experiment [8]. The direct discovery L
of gravitational waves by LIGO [1] occured in X
2017.

2—body Newtonian gravity

Figure 9.1: Newtonian orbits with low el-
Gravitational waves have already been stud- lipticity of 2 masses moving around a com-

ied in literature , under linearized GR, using mon Center of Mass.

either tensor formalism [64, §71 & §110], [10,

11, 25, 68] or mathematics of potentials [problem 11.24][58], [solution to 11.24] [100], [20]. The
results are identical for elctro-magnetic and gravitational formulations for wave generation,
under identical physical situations. However, the physical boundary conditions for electro-
magnetic and gravitational waves are significantly different as will be discussed in this chapter.

It is clear that the propagation speed of gravitational waves equals that of light, as found experi-
mentally [1] and theoretically in chapter 4.

In the electrical case, we can separate positive charges (ions - fixed in a metallic lattice) and neg-
ative charges ('free’ electrons) and move these independently, which leads to di-pole radiation.
For the gravitational case, we cannot move the masses independently, as a change in position or
velocity of one mass has impact on the other. Both masses move around a common 'Center of
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mass’ (COM), see fig. 9.1. This results in gravitational quadrupole radiation. We will compute
the consequential gravitational Poynting (power) vector and obtain the total emitted energy per
time unit.

Gravitational Poynting vector - radiated power

In this paragraph, we will study a comparison between electro-magnetic and gravitational
waves, based on the Liénard-Wiechtert (LW) field description of Eq. (7.1) in combination with
the (gravitational) Poynting vector (ﬁg = 1/ug Eg * Eg, see: §3.5.6). We realize that ug is
the gravitational copy of the electro-dynamical vacuum magnetic permeability po. Using
the analogy €9 — 1/(47n G) and knowing that the speed of gravity equals the speed of light
(¢® = 1leouo = c; = 1/egug), we find 1/ g = ¢*/(4mG) . Further we re-use from Eq. ((7.1)
Eg =7 % Eg/(rc) We will also use the vector rule (see appendixG) X * (T *d) = (Xd)U— (X
)

;:
) a. Then we calculate the total radiated gravitational power ngw as done in §3.17, leading to:

o c? . P 7
Pg,rﬁw ﬁ# (Eg* (—*Eg))-(—)dA 9.1)
#(Eg Ep)(F+7) = (FeEy) (Eg+7)dA

4HG#(Eg Bp) - (FeEg)?Ir* dA

It was shown in §3.5.6 [69, page 146], [64, page 176] that only the accelerated part of the LW
force of Eq. (7.1) contributes to the generation of radiation, when observed from large distances.
Therefore in upcoming evaluations of the total gravitational radiated energy we use Eq. (9.1),
with the evaluation of E, ¢ limited to the accelerated part.

T anGr?

One mass oscillation

Electro-magnetic waves are created by displacements of single charges, leading to Larmor ra-
diation as shown in §3.5.6. Essential in the derivation of the Larmor radiation is that a neutral
particle can be ’split’ into 2 charges of opposite sign (electrons and ions), with only ONE moving
charge and the other remaining stationary. The charged particles can move independently from
each other. This is comparable to the 1-body problem as given in §8.2.

Here, we will study the resulting power emitted by gravitational waves, emerging from a 1-
body orbit. We assume the masses to move in the low velocity regime (v/c « 1). This leads to
simpler formulas of the Eg-field:

- 3 N N N N 2 N Gmpa”
Eg:(Gmpart/r)(r*((r—wff)*a)/c) = Eg—Tr*((r*a) 9.2)

We note that the Eg-field is perpendicular to the position vector and thus (7 « Eg) = 0. Now
we use the vector identity (see appendix G) : X * (U * d) = (X+d)V — (X * V) d, and thus
Fx(Fxd)=(Fed)7— (F+7)d=(F+a)7¥ — r?d. Using these results in Eq. (9.1), we find:
tor _ _C€ = .5 - Gmpar;
Plot, = R#(Eg-Eg)dA & Eg=—5—

This instantaneous energy loss per time per opening angle needs to be integrated over all
opening angles, in similar fashion as done for the flux calculations in §3.5.2. For simplicity,
we use a circular orbit equation for a particle moving around a non-moving central massive

7,3 (F-a)r—r*a) 9.3)
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object, located at position 7y = ro (Cos[¢p] Sin[0], Sinl¢p] Sin[0], Cos[0]) = rg eo (as given in
§8.2). The position of the moving particle, related to the central object is then given as:

—_—

r%rt[t] = I'part (Coslwpars t], Sinlwpars t],0) = r,mrt e%rt leading to the acceleration
alt] = fm,trpart ,and thus a? = (d@+a) = a)pmt part For the total position of the orbiting

mass we use the assumption that the observation distance is much larger than the orbit radius

(rpart < 19),and thus 7 = 7jp + rp r t[t] = 7p. We find for the total gravitational field:

Gm —_— —_—
= part (2 2 wt 2 > 0l 2
Eg - c2r3 ( ToWpart Tpart — wpart(ro ¢ rpart) To (9.4)
0
Gm TR
_ part (pe ¢0
- T(ro rpﬂrtwpart) ( €part (eo ° part)
C TO
2 —_—
Gmpar: TpartWpare (7 00 4,@
- c2 ro €part ~ (eo ¢ part)

Now we calculate the dot—products that are used in Eq. (9.3), using

_—

(e l;a)ngrt part) (e ¢ eO ) =1:
(Eg+ Eq) = 9.5)
GMpart Tpart @\ [ — —— 5% =
part 'part part d)@ 9
: -~ ) (i et = 27 et + (0 - i el )

2 2 N
Gn”lpart rP“”wpart ) o0
2o — (e part)

Now we can detail the total radiated gravitational energy integration, integrating ﬁg over a (large
radius) spherical surface (with dA = rg Sin[01d¢do, via Eq. (9.3), to find [85]:

Cc > _
Pglay = G # (Eg+ Eg) dA (9.6)
2 —
Y 6
e ff (17 i) aa

Gm? w? —
_ part part part (/)9
B 47 3 r2 (# dA_#(eo p“”) dA)

2
Gmpurt TpartWyqar¢

c2ry

2 2 2 4
Gmpart partwpart 2 2Gmpart rpartwpart
= 5 ro (4m —4n/3) = 3
4mcdrg 3¢

This result is known [58, 69] as Larmor radiation of one oscillatory source, generating dipole
radiation.
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Gravitational waves: binary

First order estimation

When 2 gravitating masses (m; and my) are moving (far from other masses), they interact as a
2-body problem as discussed in §8.3 and visualized in figs 8.3 and 9.1. They co-move around

their Center of Mass (COM) ! and thus: m; r{”b” + my rz‘”b” = 0. Thus we also have: m; v; +
ms U, = 0 and m; @ + my @ = 0. Therefore, although the underlying physical interactions are
identical, as expressed by the Liénard-Wiechert forces in Eq. (7.1), the independent movement
of electrical charges can give rise to electro-magnetical dipole fields, whereas the always coupled
gravitational fields of 2 masses, do not allow a dipole field. This can be seen when we calculate
the radiation IW E,-field due to 2 orbiting masses, re-using Eq. (9.2), which expresses the first
order estimation of the full LW field, by omitting the term containing r /¢ agas)suming that the

distance to the observer is much larger than the orbit radius (||rcoamll > | rf rbit||y and thus we

use 7 = rcoum for both masses. We add the Eg-ﬁeld from the 2 masses, using @, = —(m;/my) a;.
RN —_ —_ G R R R N N N
Ey! :Eé + Eé = (_r302) (ml (F*(Fxd1)) + mp(7 (T * az))) 9.7
G

32

—) (m(FxFea) - mo(FeGe2an) =0

mp
When E g,‘" = 0, also the Poynting vector is zero and thus the emitted radiation energy is zero.
We therefore have to remove some of the approximations we have made in deducing Eq. (9.7)
to identify whether a binary object (= 2 masses in orbit around each other) emits gravitational
wave energy.

Second order estimation

We now calculate the total radiated power emitted by 2 orbiting masses as shown in fig. 9.1. We
calculate the Poynting vector for circular orbits (ellipticity: e = 0), using the LW fields of Eq. (7.1).
As mentioned earlier, the electromagnetic and gravitational? radiation energy can be calculated
via tensor or potential equations, as done in [10, 11, 58, 64]. Here we will use the gravitational
LW fields and Eq. (9.1) to compute the total radiated gravitational power.

As found in §9.4.1, we need to evaluate the (radiating) IW Eé” -field to higher order, than
done previously. So we re-use the (circular) orbit description as done in §9.3, with:

—_— —_—

ey’ = (Coslwpar t], Sinlwpare 1],0) and ey’ = (=Sinlwpar: t1, Coslwparc t],0) (9.8)

Y art . art ot
r;.” = rl.p (COS[a)part t],Sln[wpart t1,0) = zp lru
Y Y art . art ot
vt =drPtlde = wparer] " (=Sinlwpar t], Coslwpare 11,0) = wparer] " €}
Y Y 2 art . 2 art ot
a;'u = dl/;'u ldt = _wpartrll[J (COS[wPartt]»Sln[wl’ﬂ”t]’o) = _wl’“”rlp e‘rU

with i = 1, 2 related to the masses m; and my. Therefore the total position vector, as seen by
the observer (in the origin), of the 2 masses that are co-moving around their common Center of
Mass (COM), is then given as:

tot _ —— t
r° =rcom + 1y (9.9

—_ e e

tot o wt e wt
I, =rcomt+ 1y =Tcom— (my/my)ry

L with rcopr = rcom (Cosl[¢p] Sin[0], Sin[¢p] Sinl0], Cos(0]) = rcom ecom defining the position of the binary

system in spherical coordinates, as observed from the origin.
2 in linearized General Relativity formulation
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We also do not use the approximation in the ’s’ term of the LW field, Eq. (7. 1) but use the full
s =r1r—(7+0)/c. Under the assumptlons vic = wpart T, Pt c « 1 and r o« rcom, we
can develop the LW force term s’ to first order of v/c as:

s=r—(F+V)/c=rcom— (rcom*V)/c =rcom(1-(ecom*V)/c) (9.10)

1 1 _
— = — ~ (1+3(ecom*?v)lc)
3 oy (1—(ecom* D)e) 1oy

Where we have used the approximation, for x < 1, 1/(1 - x)3 = 1 +3x. Now we can develop
the radiative part of the LW formula to first order of v/c, from the orignal Eq. (7.1):

- Gmpar[ 2
Eo=——— —(Fx((F—rvlc)*xa)lc 9.11
g (r—(?-ﬁ)/c)3( (( Yxad)lc) ( )
Gm N I N
= 3—pm(1+3(ec0M-l7)/c)(r*(r*a)/cz—r*(ﬂv*a)/cz)
Tcom
B , < .
Gm ,-« —_—— m
~ 3—pm( 1 +3(econm* v)/c) (?*(?*Zi)/cz)— met?>s<(17>z<zi)/c3

Tcom Tcom

where we dropped the term containing (v/ ¢)%. We can now separate Eg in a part (labeled: A)
that is identical to the first order estimation as treated in §9.3, yielding a zero emission result,
and two new parts (B_&f C) that contain terms proportional to v/c. We now study the impact of
these terms on the E é‘” for the 2 (co-orbiting) mass binary. We use the fact that both masses are
bound to a common Center of Mass and thus 3 : m; 7} + my ¥, = 0 and m; @, + my @ = 0. We
tackle the 3 terms of Eq. (9.11) separately, starting with the A term:

A A A
ft) = s

" ml - - — - - —
E“" Eml Eg,”zz 3 (r*(r*al)/cz)+ 3 (r*(r*ag)/cz) (9.12)

Tcom Tcom
Gmy (., ., . Gmy (, _ mp >
= = (r*(r*al)/cz)+ 3 r*(r*——al)/cz)zo
"com Tcom my

The result of Eq (9.12) is (of course) identical to Eq (9.7). We now proceed to the (relativistic)
corrections as expressed by terms B & C of Eq. (9.11), which both contain v/c terms. 4

B B B
,_/\ ~~ ——
e

Emt E’”1 Eg,"z (9.13)

_33
CTecom

3G . e . 3G — L o
™ (ecom * 1) (7 ) SAACS (ecom * V2) (Fx(F*a>))
Tcom

3G o 3G (- PR .
= 22T om s 1) (F*(Fxay))+ i(ecozw( ml)m) (r*(r*( ml)al))

3,3 3.3
¢ COM 4 rCOM my no
3Gm] e — - —_— —_— -
= 3—(1+—)(9COM'V1) (ecom * (ecom * 1))
c’rcom ny

3 We do not use the relativistic mass dilation in this approximation, as this would lead to factors of order (v/c)?

in the E}’! -field, where we now only develop E{°° up to linear factors of v/c.

4 This immediately leads to the conclusion that the Poynting vector and thus the total radiated gravitational
wave energy of Eq. (9.1) will be a factor (v/c)? smaller for a 2-mass system than for the 1-mass system, as the Poynting
vector is proportional to (ﬁg . Eg) - (?-Eg)z 2.
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——»——»

Now we fill in the orbit parameters v1 tand ai" t as given in Eq. (9.8), using the short-hands:

art
W = Wpqry and ry, = rf :

B
~ = — —
— —SGmlrzw3 m. _— -
Ef' = ——5—"— (1+—) (ecom* €3") (ecom *(ecom * e;")) (9.14)
c’rcom may

Similarly, we find for the C term of Eq. (9.11):

C C C
r—’\ —_ =S
tot ml m2 Gmy , . 3 Gmy , . 3
E E Eg = — 5 r*(vl*al)/c — r*(Uz*dz)/C (915)
Tcom T'com
Gm _—.,  _ Gmy -my) . [(—-mq) .,
= - 3 ——ecom*(h*d1) — 53— ecom*( Uy * ai)
c'rcom c"rcom my may
Gm1 ma _ i -
= — =—— (1+—) (ecom * (N xa@r))
c’rcom ny
2 3
Gmryw o0l
=3 —)(eCOM*<e ')
c’rcom
—Gm1r2 3
= 3—( —) (€COM* ez)
c’rcom 1117

_ —

where we have used e(‘;;‘ * e‘;" =(0,0,—-1) = —e,. Now we can add Egs. (9.12), (9.14) and (9.15):

Gmlr 3 m —_— —_—

—_ 1 —_ —_ —_ —_ —
E" = (1+ =) (3(ecom » €5") (ecom * (ecom * €')) +(econ = €2)]  (9.16)
g mo ¢

cSrcom
For computing the total radiated gravitational (wave) power, as given by Eq. (9.1) we need to eval-
uate the dot product (7 « Eg) ,where ¥ = rcom = rcom ecom - Thus we realize that the vector

—_—

direction of Eg,“t is given by the two cross-products, with ecoys as direction determining vector
and thus the electric field is perpendicular to the position vector and therefore: (7  E, ¢) =0.We
can thus omit this term from the Poynting vector integration.

totx _ prot  ( Gmurge’
We now define the help parameter E;°*" = E;°*/ ( pro—

the Poynting vector and the total power radiated as gravitational wave energy, in similar way as
in §9.3 as given in Eq. (9.1):

P[] = L # (Bg » Eg) — (7 = EQ* 17800 dA 9.17)

6Gmirie®  my
- - - _)
156‘5 my

(1+ %) ) . We can now compute

G m2
2 totx* tot*
= — — E E dA =
N
as the last surface integration evaluates to [85] 3047/15. Apart from a numerical factor = 2,
these results co-incide with the results from linearized General Relativity [64, page 379], [65

page 516], [69, page 252], [70, page 334].

From these equations the orbital decay (=reduction of orbital radius) has been studied ex-
tensively [65, §18.8], [25]. From this analysis binary collapse was predicted, as was actually
recently observed by LIGO [1].
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Conclusions

In conclusion, we identified the gravitational energy emitted by masses in orbit. We found that a
1-mass oscillation generates dipole radiation. However, as gravitating masses in orbit influence
each other, when they orbit around a common Center of Mass, the 1-mass oscillation is not
realistic. When evaluating the emitted radiation from a binary system, we find relations as found
in linearized General Relativity. We find these results using the 'normal’ Liénard-Wiechert force
equations, as used as basis for all our evaluations.

We do not find any intrinsic (='given by physics laws’) difference when treating electro-dynamics
and gravity for the generation of waves. We only need to realize that in electro-dynamics, we
can move the radiation generating charges independently, whereas with gravitating masses the
movements are always interlinked. As a result, gravitational radiation is described by equations
which look like quadrupole radiation as known in electro-dynamics.

Figure 9.2:
R. Hurt/Caltech-JPL visualization of gravitational waves,
by a binary star combination about to collide,
due to loss of gravitational energy.
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Figure 9.3:
NASA James Webb image: Arp 142, two interacting galaxies.



In this book, we have attempted to identify gravity and inertia as induced properties. Based upon
experimental facts and known theories, we have aimed to establish that gravity is an induced
electro-dynamical effect due to charged quark (quantum mechanical initiated) movements.
This leads directly to equality of speed of gravity and light, as well as some qualitatively under-
standing of gravitational bending of light and time delay. Furthermore, inertia is proven to be
the gravitational induced effect of all masses of the universe (Mach principle). Mass dilation
effects (leading up to E = m c?) can then be attributed to gravitational effects of moving masses.

In fig. 10.1 the inter linkages between the various experiments, theories and predictions are
summarized, with orbit theory (perihelion shift) yielding unsatisfactory results.

—bl Speed of gravity |
—-l Shapirotime delay |

: Isotope mass |

Maxwell equations(E & B)

Gravity

1
1
1
1
1
1
T
Liénard-Wiechert( E) I
1
1
1
1
1
1

—Pl Mass dilation |
—>| Perihelion shift |

l Gravity waves

Experiment Resulting known theories Predictions from new theory

Figure 10.1: The inter linkage of experiments, known theories and the new theory.
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Figure 10.2:
NASA James Webb image of spiral galaxy IC 5332:
a balancing act of gravity and inertia.

The summary in words only:

1. Electrical forces spread evenly over 3D-space and 1D-time:
Liénard-Wiechert force.

2. Physics at the smallest space scales:
quantum mechanically moving charged quarks lead to gravity.

3. Boundary conditions at the largest space scales:
expanding, mass filled, universe leads to inertia.

From the fundamental forces in nature (strong & weak nuclear force, electro-dynamical force,
gravity and inertia) only 2 remain: strong nuclear and electro-dynamical force.



Although the presented theory has been able to answer some outstanding questions around
forces in physics, it is clear that many open questions still remain, which require studies:

1. §3.5 Liénard-Wiechert fields: Currently the deduction of the Liénard-Wiechert field
equations starts with the Maxwell equations [64, 69], relying both on electric and magnetic
fields. The Liénard-Wiechert field equations, as given by Eq. (3.6), only require the defi-
nition of the electric force (field). It should be possible to deduce the Liénard-Wiechert
field equations from only 2 basic principles: the static electric force equation for 2 charges
and the constant velocity of expansion of this force. An initial study can be found in [9]
including references to previous work into this topic.

2. Chapter4 Electron: what is (gravitational) model of an electron, that reconciles gravita-
tional interaction and atomic nature (=single point charge)?

3. Chapter4 Anti-matter: is still poorly understood in this new theory. It has an induced
gravitational mass of opposite sign as normal mass (as it has opposite charged anti-quarks).
As aresult it should have inertia of opposite sign. If this is combined with the opposite
electric charge, anti-matter should move in identical direction as normal mass in an exter-
nal magnetic field. This is obviously not the case [56].
However, when repeating the boxed experiment of §3.2, with matter and anti-matter
inside the box, the conclusion is that the mass of matter and anti-matter is additive, as the

total mass in the box is converted into energy, as E = mc?.

4. §5.7 Gravitational refractive index: the optical refractive index can be calculated based
on the Lorentz model [49, 60]. This model needs to be extended for gravity and made
more quantified. Aim is to prove the gravity impact on the speed of light: Eq. (5.6). See for
a possible alternative approach: footnote 1 on page 37.

5. Chapter 6 Quantum evaluation of mass prediction from quark distributions: the mass
prediction of low-Z element nuclei, based on the semi-classical quark distribution, needs
to be redone using a proper quantum mechanical methodology.
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6. §7.4.3 high velocity inertia in Hubble expanding universe: The integral of Eq. (7.16) is
still to be solved mathematically, aiming to arrive at Eq. (7.10).

7. §8.5.3 Orbit mechanics : still needs further analytic studies, aiming to arrive at the
perihelion shift results known from General Relativity. It still puzzles me, that General
Relativity gives a positive value of this shift, whereas its linearized version (as expressed by
the Liénard-Wiechert forces) shows equal, but OPPOSITE values.

It is recommended to repeat the perihelion shift calculations, first in linearized Gen-
eral Relativity with fully metric formulation!, followed by a repeat of the analysis with
Liénard-Wiechert forces.

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

Inflation

Quantumn
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years

Figure 11.1: Evolution of universe [89, 39],
including the Big Bang 'afterglow light’, as shown in fig. 3.11.

8. §7.3.2 inflation & accelerated universe : We found an acceleration term in the grav-
itational inertia formula Eq. (7.9) which may account for early inflation [65] and the
acceleration of the universe [96, 70].

1 It must be noted that it is claimed [68, page 446], [65, page 486] - without details - that the linearized approxi-
mation of General Relativity is not sufficiently accurate to predict the perihelion shift, although some recent efforts
[47] suggest otherwise.



The suggestions given in this book are based on earlier work in experimental and theoretical
physics. Therefore it is clear that and old Newtonian wisdom is applicable, albeit in a slightly
modified form:

If I have seen further,
it is by standing on the shoulders of giants,

but...

I looked the other way !
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Figure 12.1:
NASA James Webb [90] image of the proto-star L1527.

I hope this book stimulates
new thoughts on forces in physics.




The equivalence principle as pro-
posed by Einstein [48, 53, 66,
69, 70] has various formula-
tions. One of them postulates the
equivalence of the results of all
physical experiments for a boxed
accelerated observer and a boxed
observer in a gravitational (force)
field, as visualized in fig. A.1. We
consider the experiment of mea-
suring time via clocks inside the
boxes. As extension of the twin
paradox, we want to treat the fol-
lowing thought experiment:

CORDRDED)
— quadruple clock —

(D

We use 4 identical clocks, initially
non-rotating to the 'distant’ stars,
co-located in a geo-stationary or-
bit and synchronized. Then the
clocks separate and take 4 differ-
ent paths:

(T) O Eanth Y

1

Figure A.1: Equivalence principle visualized (by L.
Taudin [62]), with Machican 'fixed’ stars added. The ar-
rows indicate acceleration and velocity, as observerd by
"Einstein’.
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1. remain in geo-stationary orbit.

2. remain in geo-stationary orbit, but the clock is connected to the end of a rotating rod,
such that the centrifugal force that is felt, equals the gravitational force as experienced (on
earth) by clock (3).

3. ’climb down’ a ladder to earth, remain on earth (experiencing earth’s gravity, with free
fall acceleration : g ~9.8 m/s?) and re-climb the ladder to geo-stationary orbit, once the
rocket (see below) with clock (4) returns.

4. take aride on a (unpractically large) rocket, which has a continuous acceleration (identical
to the ’ladder climbing’ clock (3) ). It remains accelerated for a prolonged period of
time, reaching a maximum velocity (measured from earth!) in the order of the speed of
lightz. Then it (slowly) turns 180° to point back to the direction where it came from, while
continuing to fire its forward thrusters (thus maintaining - almost - the same acceleration
as clock (3) on earth). It then slows down to zero velocity compared to earth, regains
velocity again towards earth and returns back to a geo-stationary orbit (after - once more -
making a 180° turn), to be reunited with the other clocks

These experiments lead to various accelerations (inertial or gravitational, compared to the earth
free fall acceleration constant g) and maximum velocities, with respect to earth, as summarized
in the table below.

acceleration force: .
. . acceleration | maxv/c

# clock path inertial or / ~

gravitational g -
1 | geo-stationary none 0 0

eo-stationar .
2 & . y inertial 1 0
+ rotation

3 earth gravitational 1 0
4 rocket inertial 1 /2

Once the rocket returns to geo-stationary orbit, and the 4 clocks are (non-rotating) co-located
again, their time indications are compared. According to the equivalence principle, the clock on
earth, the rotating clock in geo-stationary orbit and the clock in the rocket are equivalent, as
they have experienced the same force (be it gravitational or inertial). The clock that remained,
non-rotational, in geo-stationary orbit should show a different clock indication, as it experienced
no force.

Note that only the clock in the rocket has actually reached high (relativistic) velocities, whereas
the other accelerated clocks only reached non-relativistic velocities, compared to earth.

1 We take earth as the center of the 'fixed’ stars in Machian sense. A better definition for the velocity of the "fixed’
stars is to take the average velocity of all masses in a sphere around earth with a radius in the order of = 0.01 7y, pp1e
with the Hubble radius g1, = ¢/ H, where the universe become homogeneous [31]. See also chapter 7.

2 From [99] it is known that a constant acceleration (g) results in a relativistic velocity () of magnitude:

vic=(gt'lc)/\/1+ (gt'lc)?. Taking g to be the earth free fall acceleration with a magnitude of about 9.8 m/s?,

we find that the condition of g t' = ¢ — vl/c = 1/V2 is reached after a (rocket) time (¢’ = c/g) of about 1 year. At
these velocities the time dilation factor v/1— (v/c)? is significant.
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Now our thought experiment receives a budget cut. We go from a 4-clock experiment to a 2-clock
experiment®

the geo-stationary orbit is replaced by a low-orbit space station (like ISS),
the rotating rod clock in geo-stationary orbit is canceled,

the ladder becomes an ’ordinary’ rocket flying to and from ISS,

the (unpractical large) rocket is omitted.

- W

Actually, long duration (> 6 months) stays in low-orbits are routine nowadays [106], without
the observation of significant clock speed differences* between earth and ISS, in contrast to
expectations from the equivalence principle. Gravity, while standing on earth, does not lead
to acceleration, nor velocity, whereas an (inertial) acceleration leads to velocity, and thus time
dilation, as summarized to [41, pages 599-600], [68, pages: 163-176 & 393 & 1055] :

"Velocity produces a universal time dilation, acceleration does not."

In conclusion:

The full experimental equivalence of boxed experiments
under gravity or acceleration
cannot be maintained.

Note: The 'weak’ equivalence principle ('inertial mass is due to gravitational mass’) has been
discussed and proven in chapter 7.

3" An even cheaper experimental setup with only earth based clocks can be defined: one clock fixed to the ground
and one clock in rotation on a string. However full (force strength) equality cannot be achieved in such a setup. This
experiment (5 & 6) can be easily realized by putting a clock on a rotating, flexible, device, such that it experiences
only downwards forces. A spinning device that would generate an acceleration of about 5g, would result in a few
weeks duriation experiment to reach significant time dilation, see footnote 2 on page 86.

acceleration force: .
S acceleration | maxv/c
# clock path inertial or / ~
gravitational & -
stay put o
5 d gravitational 1 0
on earth
stay on earth ravitational
6 yone gravitaric 2-10 0
+ rotation +inertial
muons in negligible at
7 . o . ~0 1
cosmic radiation | nearly speed of light
muons in a . .
8 . inertial >>10.000 1
storage ring

Actually executed [68, page 1055], [70, pages 66-67] experiments (7) and (8) involve spontaneously decay of relativistic
fast muons. They are either created in the top layers of the atmosphere and studied on their path to earth (7), or in
accelerator storage rings (8)[7]. Both experiments prove the time dilation of relativistic fast moving muons to be
independent from the acceleration (force).

4 As known from GPS satellites [2], a small time dilation between ISS and earth clocks can be expected due to
gravitational time dilation in combination with Special Relativity, velocity induced, time dilation.
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Figure A.2:
NASA image of collided galaxies: Bullseye [32].



The Olber’s paradox [12, 72], [68, page 756] (Why is it dark at night?’) is based on a calculation
that aims to compute the total luminance of the night sky. We assume a static universe with a
constant density of light emitting stars (Lumy). As the luminance per star decreases with the
distance squared (1/ r2), and the amount of stars increases quadratic with distance ( r2), we find
for the total luminance (Lumt”” iy for a static universe with radius max:

smtzc Tmax 2m Lu my 25 _
mi,; inl0ld¢dOdr = 4Am Lumg rpax (B.1)

If we take a static 1nﬁn1te universe (rmax — 00), we find an infinite luminance, which is the
starting point for the Olber’s paradox. However, when we introduce Hubble expansion, the
situation changes dramatically, as was already shown, originally by Tolman, early 1930 [95, 33,
42]. Then, the redshift z[r], see §7.8, becomes important and eq. B.1 is reformulated as (utilizing
the Hubble expansion redshift Eq. (7.26):

Tmax 2t Lum
I expandlng f [ f 0 2 . B.2
UMyoy Atz 2 reSinl0ldpdodr (B.2)

rmax/rHubble _ /
= A7 T gypbie LUumg f e  "MTITHbble q (1 [ T Hupbie)
0

where £ is a variable found in literature, that may vary from n = 0 representing a static universe,
via n =2 as shown by the original Tolman model [33, 42] (and experimental data [26]), to n =4
taking into account all possible luminance reduction expansion options [95]. The integration
of Eq. (B.2) is visualized in fig. B.1b. It is clear that, for a an expanding (7 > 0) infinite universe
(rmax — 00), we find convergence and the integral evaluates to a simple 1/n.

Xr
f e ™dx
1/(+z)" = ™" 0

1.0
o n=0
0.8 - n=1
n=2 n=2
0.6 n=3 n=3
n=4 n=4
0.4
0.2
0.0 ! S S i ,
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
xr = r/rHubble xr = r/rHubble
(a) Tolman luminance reduction, for various 7. (b) Integration of Tolman function.

Figure B.1: Luminance reduction function and integral from Tolman model.

Therefore, we find that (Hubble) expansion of the universe is a sufficient explanation for solving
Olber’s paradox, why 'the night is dark’.
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Figure B.2:
NASA James Webb image of Stephan’s Quintet.



In this appendix we provide some computational details behind the integration of Eq. (7.9) in
§7.3.2, which describes the gravitational, inertial force on an accelerated mass in relativistic
movement in a static universe model. The computation has been computer assisted [85], but
some intermediate steps are shown here. The gravitational Liénard-Wiechert force fields have
been introduced in §7.2 and used in §7.3.2. For the static universe we put the observer (with mass
Myps) in the center and use spherical coordinates: X = (x, ¥, z) = (r Cos[¢] Sin[0], r Sin[¢p] Sin[0],
r Cosl[0]) (see fig. C.1a), with velocity 7 = (0,0, v;), 0 < v, < c and acceleration d = (ay, ay, a;),
as shown in fig. C.1b. The definition of the velocity to be in the positive z-direction maintains
generality, as we do not put constraints on the acceleration vector and we integrate over the
entire (static) universe.

y-axis

(b) Observer in the center of the static universe: all
(a) Spherical coordinates definition. particles have identical velocity and acceleration.

Figure C.1: Spherical coordinates and the static universe in motion & acceleration.
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The total force integration over all masses of the static universe amounts to:

all masses __

Fl = Fgdmass (€.

Tmax [T (27 - = m
== mobsj; j(; /(; ( p

EX+Ux*B
gtV *Bg) 1+ (v;/c)Cos[0]

all masses
= mobsGP\/l_(Vz/C)zf (fx> [y, fz)dmass

where 1,4, indicates the size of the universe (as seen by the observer). Also we re-used
Eg = Eg/mpgrs and Bg = Bg/mypqr¢. We have taken the factors, that are constants for the

r*Sinl0) dpdodr

(space) integration m,ps Gp+\/1—(v;/c)? out of the integration and find the following inte-
grand functions in (x,y,z) directions, which include the drop of the minus sign in the 3" d line of
Eq. (C.1):

fx = Sin[0] ( axr (8v,Cosl0l/c + (1+ (v;/6)*) 3+ Cos[20])) (C.2)
—4Cos(¢] Sinl0] (2 - (vz/0)*) + azrv,/c + azrCosio])
—2(1 - (vz/0)*) r Sinl0)? (axCos[2p] + aySin[2¢]) )

/ (4c2 (1+(v,/¢) Cos[e])4)

We find a similar integrand for the y-direction (as to be expected from symmetry considerations,
around the z-axis (=velocity axis). Note some exchanges in ay < ay, and Cos[¢] < Sin[¢]:

fy = Sin[0] ( ayr (8v,Cos[0]/c + (1+ (v;/0)*) (3+ Cos[20]) ) (C.3)
—4Sin(¢] Sinl0] (¢*(1 - (v2/0)*) + azrvz/c + a,r CoslO])
+2(1— (vz/0)*) r Sinl0)? (ayCos[2¢] — axsm[2¢]))

/(4¢®(+ @.10) Coslon*)
For the z-direction, we find a different equation (as the velocity is in z-direction):
f.=  Sinl0) (62 (1= (vz/¢)?) (v /c+Cos[B]) + ... (C.4)

et

azr . .
5 (1 - Cos[20]) — rSin[0] (v./c + Cosl0]) (ax CoslP] + ay, Sin[P]) )

/ (02(1 + (/0 cOs[01)4)

Now we perform a partial integration over the azimuth angle fOZ” d ¢ to arrive at:

— rmax T
Flot = mobst\/l—(vz/C)zfo fo S 1y £ aodr €5

with:
00,1 = axnrSinl0] (8(v/c) Cos[0]+ (1+ (vz/0)%) 3+ Cos[20))) ©6)
2c¢2(1+ (vy/c)Cos[O4
f"’[e "o aynrSinl0] (8(v;/c)Cos[6]+ (1 + (v2/0)*) (3+ Cos[20)) )
ye 2¢2(1+ (vy/c) Cos[O])*
10,1 = 27 8inl0] (¢*(1—(vz/0)*) ((vz/c) + CoslO]) + a,rSin?[0])

c2(1+ (vy/c)Cos[O*
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Now we continue with a further integration over the polar angle [ d6:

—_— I'max
Fg“”:mobst\/l—(vz/C)zfo (£, 120, 1%y do dr ©7

with:
0 8mayr 1
= C.8
=52 1-(vz/c)? (€8)
8mayr 1
0, y
fy il 3¢ 1-(v,/c)?
09, — A (2azr — vyc(1—(v5/0)?) 1
‘ 3c? (1-(wa/0)2)?

Now we finish the integration by integrating of the radial coordinate of the universe for medr.
The upper integration limit 7,4, is used to obtain mathematical convergence of the integration
over the radius of the sphere of the static universe. In line with §7.3, we use as maximum radius
of the universe, the radius, which follows from the linear Hubble law: v = Hr. The (maximum
possible) velocity of light is obtained for 7,4« = ¢/ H = rguppie, which we will use as upper
integration limit. Finally we find the results as presented in §7.3.2 and given in Eq. (7.9):

NN c/H pn p2n N /l—(l} /6)2
FtOt: _ \[ \[ f E* - B* z 2 . )
g Mobs , A (Eg + U = g)p1+(vz/c)Cos[9]r Sin[0) dpdOdr (C.9)

" 4np G ay ay a,— Hv,(1- (vZ/c)z)
= Mypps , )
3H? \ 1 (02102 V1-(vz/0? V1= 0%

The importance of computer assisted mathematical analysis [85] has been made clear (at least
to me).
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Figure C.2: James Webb telescope [90] image of the
"Pillars of Creation’ (image by NASA).



Here we give some computational details behind the integration of Eq. (7.14) in §7.4.2, which
describes the gravitational, inertial force on a, slow (v <« ¢) moving 1 accelerated mass in an
infinite Hubble expanding universe. The total force integration over all masses of the static
universe amounts to:

—_— all masses __

all masses
Fl = Fgdmass = mobsf (fo fy, [z)dmass (D.1)

oo, 2T R N
= f f Mops (Eg + U % Bg) p e~ THubble 12 Gip1) dpdodr
o Jo Jo

The calculation has no symmetry condition, and therefore we expect equal results in (x,y,z)
directions, for a given acceleration a = (ay, ay, a;). When evaluating E; and B [85], we find

for fx, fy and f :

f B mobSpGe_gr/rHuhble
* 8c?

- 8CosH(r/ rrupbicl (axrCos?(6] - a; Cosl0) Coslg] Sinl0) + .

Sin[0]. (D.2)

..+ Sinl0] (c? Cos[¢p] + r Sin[6) Sinlp) (—ay Cosl] + ax Sin[pl)) ) — ..

. — 8Sinh?(r/Tgubbie) ¢ Cosl(¢p] Sin[0] + ...
e+ rSinh 21! rHubbIE] (Bax +ay,Cos[20] —2a,Cos(¢p] Sin[20] — ..

..—28in*(0] (ay Cos[2¢] + ay Sin[2¢]) ) )

f _ mobspGe_sr/rHubble
v 8c?

. ( 8Cosh®[r | ruppie) (ayr (Cos*[0] + Cos®[p] Sin*[0]) + ..

+8in[0] (¢* - r (a; Cos(0] + ay Cosl¢] Sin[6])) Sinl¢]) — ..
.. — 8c%8inl0)Sinlp] Sinh*[r 17 Huppie) + -

Sinl0]. (D.3)

W+ rSinh2r/THubbIe] (3 ay + ay Cos[20] — 2a; Sin[20] Sin[¢] + ..

. +28in’(¢] (ay Cosl2¢] - aSinl2¢1)) |

1

in relation to the average of nearby (r < 0.01 7 g, pp1e) Universe masses.
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f _ mObSpGe_3r/rHltbble
7 =
4¢?

. ( 2 (3 _ ezr/rHuhble) Cos[0] + 2! THubvie Coshlr! rgupbiel -

Sin[6]. (D.4)

(c*Cosl0] + r (2a,Sin?(0] - Sin[20] (axCos[¢p] + ay Sin(p]))) )

Similar as done in appendix C, we perform a partial integration over the azimuth angle 02 Tdg
to arrive at:

1?:[0 fo L f2, 1y aoar (D.5)

where we find for ff ) f;p and fz(/’ :

G
£ = % re 2" Tuvte Coshir | rupiel Sinl1 (3 + Cos[261) (D.6)

¢ aynmobspG

Y re 2T THuble Coshlr | riuppie] Sinl6] (3 + Cos[260]) (D.7)
C
Tm G
= —"Cb;p e 3" Twvie (2 ¢% Cos[] + azr (1+ €' "urbie) Sin?[0] ) (D.8)

As expected we regain the symmetry between f, and f, after the integration over the azimuth
angle. After a further integration over the polar angle f;’ d6 we arrive at:

B — o0
Fé‘”:fo O 0 ar (D-9)

where we find (as to be expected) identical formulas for ff 6, ;,/’ % and fzf/) 9,

dnm G

)(C,DH = ay —ol;sp re_r/rHubble (1 4 e_zr/rHubble) (D.10)

3c

(PG 4”m0bSpG —r/rH bbl =2rlr

=-aq,——7re ubble 1+€ Hubble Dl].
fy y 3(,‘2 ( ) ( )
Z‘rbe = a, 4nm0bzspG re T/ THubbie (1 + e—ZV/rHuhhle) (D.12)

3c
Now we define the help integration variable x = r/ rg,ppie (temembering that ry,ppe = ¢/ H
with H being the Hubble constant) and thus 1/c2rdr = llczréubble xdx = 1/H? xdx. Now

we can execute the final integration to arrive at the total inertial force, due to the gravitational
forces of all masses in a Hubble expanding universe:

r 4npG 40npG
Fém = Mgps (ax, ay, az) p p

e

[e.0]

—_— xe (1 +e ) dx = mypsd
3 2 fo ( ) obs
An image of (the convergence of) the integrand was given in fig. 7.7b. We find that most inertial
force is generated at distances larger than the Hubble distance. The constant 437”—55 equals a
value close to unity, based on the outcome of the General Relativity Friedmann models for the

universe [65, 70], in combination with WMAP [89, 39] analysis.



Gravito-magnetism has a long history [36]. Maxwell applied his electro-dynamical equations to
gravity, but was baffled by the possibility of inifite negative energy (currently labeled as "black
hole’). Inspired by the Maxwellian equations for electro-dynamics, Heaviside [19] proposed a
gravitational analogon, but found only very limited orbital effects.

Lense-Thirring calculated the effects for a rotating mass, based upon linearized General Rela-
tivity, but found minimal effects, confirmed to limited experimental accuracy by the Gravity-
Probe-B [36] mission.

Orbit calculations with gravito-magnetism have been attempted, with mixed results [4, 84,
27,28, 34].

In this book, we have re-used the gravito-magnetism analogon, but expressed the fields not
by the Maxwell equations but by their equivalent Liénard-Wiechert formulation, as shown in
chapter 7 and detailed in Eq. (7.1). Contrary to Lense-Thirring, we did not focus on a rotating
sphere, but studied a - low velocity - accelerated mass filled sphere. The low velocity analysis
of an accelerated - static - universe elimitates the 'magnetic’ field ! , but shows the importance
of the acceleration part of the ’electric’ field in the Liénard-Wiechert equation. Using the size
of the entire - mass filled - universe gives a significant force effect (inertia), rather than the
very smal 'frame-dragging’ effects of a singular rotating mass. During the beginning of the 20
century, the size of the universe, linked to Hubble expansion was not known [68, page 758], and
therefore, it is historically understandable that a gravitational analysis with such a large size was
not conducted. Only by 1953 did Sciama [37] study the gravitational (inertial) impact of a large
accelerated mass filled sphere.

1 as the 'magnetic’ term drops from the total force term, given the gravitational equaivalent of Eq. (3.7).
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Figure E.1:
NASA James Webb image of cartwheel galaxy,
located at about 500 million lightyears from earth.



In this appendix we study the size of the universe, based on inertia assymetry arguments. These
were originally discussed in the critique of the static university model, in §7.3.3.

Here we detail a similar asymmetry argument
for the Hubble expanding universe. We will de-
rive equations for the resulting asymmetry of
inertial forces when the Hubble universe is not
symmetrical on large scale !. To achieve this
we split the result of the inertia analysis in an
expanding universe, as given by Eq. (7.14), in
2 parts. The first part is a spherical symmetric
force integration up to a radius: Nsym I'Hubble -
The second part is an asymmetrical force inte-
gration from this distance up to infinity, with
anon-complete integration over the polar an-
gle (), from 0 to 7 —§. This is also shown in
fig E1. The total inertial force is then expressed
as:

Figure E1: Asymmetric Hubble uni-
verse: full, mass filled, sphere (up to
Nsym T'Hubble) and an incomplete sphere

stretching to infinity.
—_— NsymTHubble (T (27T N
F;,Ot = —mobsf f f (Eg+ U *Bg)p e~ T/ THubble 12 Gip(0)] dpdodr —... (El)
0 0 Jo
0o -0 p2m N
. mohsf f f (B2 + 0+ B2)p e "/mwnte 12 Sin(0] depdo dr
NsymTHubble Y0 0
npG Oasym Oasym Oasym
= Mops 257 (axfxy Y (Msym, o1, ayfxy ’ (Psym, o1, 12" laz, Nsym 5])

1 Note that was proven that the universe is homogeneous at length scales r > 0.01 77, pp1e [311.
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with the function ff;“ym[nsym, 0] and ff’”ym[az, Nsym, 0] given by [85]:

2

,
O 1, 6] = HUEDLE =3 ()
y Y 8

. (320€3™m 4 9e*™rm (1 + 15y ) (=16 + 15C0s[8] + Cos[36]) + ...
o + (L+3ngym) (-16 +15Cos[8] + Cos[36]) )

0 T'Hubble —
fzasym[az, nsJ’m,5] = —lil ¢ e 3’15”"...

(= az Trubbre (1 + 3Ngym +9€9™ (1 + ngym) (—9C0s([8] + Cos[36])) + ...
o + 420z Trupble (—1+20€°™9™ =315, — 9™ (1 + ngym)) + 9c*(Sin[61)?))

For 6 = 0 we find the results from Eq. (D.13).

From Eq’s. (E1) and (E3) we find immediately that no asymmetry forces arise in the sym-
metric x,y-direction, as we employ a full integration over the azymuth angle (¢). The force
in the z-direction contains 2 parts. One part is proportional to a; rg,ppie and the other to
c?. Normally a term containing ¢?> dwarfs all other terms, but not here. When evaluating
az rrupbie! ¢ = azl(c H) = a; 1.5 x 10°. Therefore, we can neglect the term containing ¢? in Eq.
(E3) for accelerations | a, | = |10~/ m/s?. This allows a simplification when taking the force ratio:

az

gdsm
[z v [az;nsym;a] 1 = -1+

Fratiol Nsym, 01 = Busym p
axfxy [nsymr5] X

2( 160e37sym 4+ 9g2Msym (1 + Nsym) (=8 +9C0s[6] — Cos[36]) + (1 +3nsy,,)(—8+9Cos[6] — Cos[36])

" 3203Msvm + 9€2Msym (1 + ngym) (—16 + 15C0s[8] + Cos[36]) + (1 + ngym) (—16 + 15C0s[8] + Cos[36))

Fratiol Nsym, 6] has been visualized (for a;/a, = 1) in fig. E3a. It shows an exponential decay
as function of n;y,, and has a maximum for § ~ 7/4. In fig. E3a and E3b the behavior of this
function is detailed further for larger values of the homegeneous universe size nsym (* rgupbie)-
We find that a symmetric universe with a radius of 15 rgyppie, gives a 1 ppm force asymmetry
(for 6 = m/4). This should be detectable from E6tvos type experiments 2 [107]. If this lppm
force asymmetry is not observed, we must conclude that the Hubble expanding universe is
symmetrical up to a radius of atleast 157y, ppie -

The alternative hypothesis, that the universe is symmetrical, but finite in size, with the earth
exactly in its center, can be easily falsified. To prove this, we analyze inertia behavior of objects
that are located at large distances from earth. Deep field studies [108], based upon images like
fig1, 7.8b, 7.12, E.1 and E4 make observations at distances > ry,pp1.. NO evidence for inertia
asymmetries in galaxy movements is known to the author. This indicates that those locations in
the universe have identical inertia properties as found on earth. Therefore (under the alternative
hypothesis) all these positions can also claim to have the priviliged position as the center of the
universe. Thus 'every position in the universe’ can claim to be its center, and thus 'there is no
center of the universe’. Therefore the altenative hypothesis cannot be true, and we are lead to
the conclusion of the very large (infinite?) universe as given in the previous paragraph.

2 In fact E6tvos type experiments measure differences between gravitational mass and inertial mass. Thus
asymmetries in these massses point to asymmetries in their sources: quark movements and the shape of the universe.
In summary: E6tvos type experiments measure asymmetries between the smallest and largest length scales.

(E3)
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Figure E2: Contourplot of asymmetrical inertia force.
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Figure F4:
NASA James Webb image of galaxy LEDA-2046648,
located at about 1 billion light years away from earth .



In this entire book, we have consistently used S.I. units [98]: seconds (s), meter (m), kilogram (kg),
Ampere (A). From these elementary units, we find derived units and values for the elementary
charge of the electron & proton (g ), speed of light (¢) and permittivity of vacuum (¢g ). These
unit usages lead to the Liénard-Wiechert fields as given in Eq. (3.6) of §3.5.

In this book we have used vectors intensely as expressions for the strengths and directions
for position, velocity, acceleration and force in a 3-dimensional Euclidean world, with 1 time
coordinate (t). We use vectors in 3 dimensions as:

Position: X=1(x,y, 2)
Velocity: vV=dX/dt = (vy, vy, v;)
Acceleration: a=dvldt=(ayx,ay,a;)

The Euclidean norm of a vector is given as: || X | = /x% + y? + z2.

Spherical coordinates (See also: fig. C.1a) are given as (r, ¢, 8) and give the vector position as:
X=1(x,y,z) = (rCosl¢lSinlf], r Sin[¢p] Sin[0], r Cos[0]) .

For forces we use 2 notations: one as vector and one with an over-arrow (if long comments in
the name are needed):

Force: F = (Fy, Fy,F;) or: Fé‘”

For the electro-dynamical, Liénard-Wiechert, force equations, we need to use verctor dot- and
cross-products, which have following properties, in flat 3D space [58, pages 601-603]:

a+U=(ax,ay,az) * (Vx, Vy, V) = axVx + ayVy + a; v, (G.1)

-

axv= (=azvy + ayv;, Gz Vx — Ay Uz, —Ay Ux + Ay Vy)

-

Xx(Vxa)=(Xead)v—(X-v)ad

de(D*xX)=Xe(ad*xD)=0D(X*a)
(ﬁ1+52)*?=dl*?+dz*? 5*526

Approximationsfor x < 1: V1—-x=1-x/n 1/{Y1-x=1+x/n
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Figure G.1:
NASA image compilation of earth and moon in the solar system.
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Figure G.2:
The star cluster NGC 602 is a birthplace for new stars.
We hope this book will stimulate the birth of new ideas in phyisics.
(image by NASA/ESA)
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