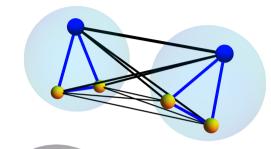

Apetizers

What is the the speed of gravity and **WHY**? speed of light / ???

Is gravitational constant G important for planetary trajectories?

Yes / No

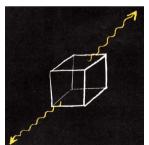
On the origins of **GRAVITY** and **INERTIA**

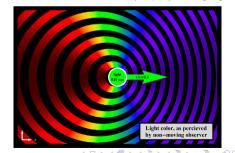


Jeroen van Engelshoven ©

September 23, 2025

- Foundations
- 2 Root cause for gravity
 - Optical properties of gravity
- Root cause for inertia
 - Static universe
 - Expanding universe
 - Applications
- Conclusions


Special Relativty (1905)



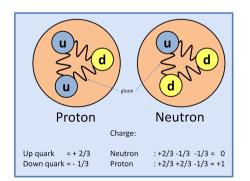
- ullet constant speed of light \implies Maxwell equations ($ec{E}$ & $ec{B}$) \implies Liénard-Wiechert fields (\vec{E})
- $u_{obs} = \nu_{original} \frac{\sqrt{1-(v_z/c)^2}}{1+(v_z/c) \cos[\theta]}$ • Relativistic Doppler effect :

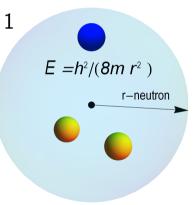
•
$$E = mc^2$$

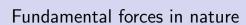
Field theory: retarded, dynamic Liénard-Wiechert (1898)

petween 2 moving charged particles:
$$ec{F} = q_{obs} \; (\, ec{E} + ec{v} * ec{B} \,)$$

$$ec{E} = q_{
m part}/(4\pi\epsilon_0 \; s^3) \; (\; (1-(v/c)^2) \; (ec{r}-rec{v}/c) \; + \; ec{r}* (\; (ec{r}-rec{v}/c)*ec{a}) \, /c^2) \ ec{B} = ec{r}*ec{E}/(r\,c)$$

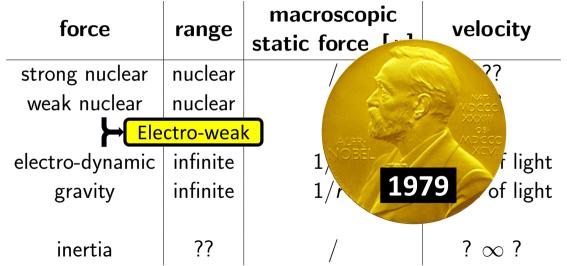

F	Electro-dynamical interaction force between particle and observer (= 3D vector)
ĒΒ	field vectors to arrive at the interaction force vector
\vec{r}	position of field generating particle $\overrightarrow{r_{part}}$ compared to observer $\overrightarrow{r_{obs}}$, in direction particle to ob-
	server: $\vec{r} = \overrightarrow{r_{obs}} - \overrightarrow{r_{part}}$. We use $\overrightarrow{r_{obs}} = \vec{0}$: observer in center.
\vec{v} \vec{a}	velocity $\vec{v}=d\overrightarrow{r_{part}}/dt$ and acceleration $\vec{a}=d\vec{v}/dt$ vectors of particle relative to the observer
r v	vector norm of \vec{r} and \vec{v}
С	velocity of electro-magnetic fields in vacuum $=$ speed of light ($pprox$ 299 792 km/s)
S	$r - (\vec{r} \cdot \vec{v})/c$
ϵ_0	vacuum permittivity $pprox 8.854 imes 10^{-12} F/m$
q_{obs}	charge of the observer, located at the origin $(x, y, z) = (0, 0, 0)$
q _{part}	charge of the field generating particle
• *	represent the vector dot product and vector cross product

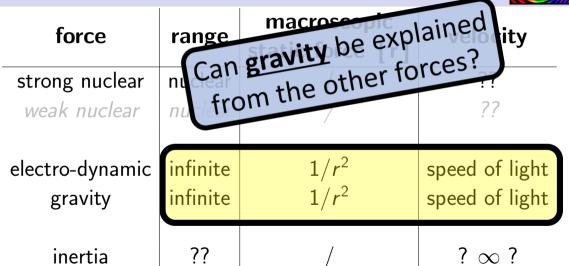



Quantum physics ($\pm\,1930)$ - Standard model ($\pm\,1970)$

Particle in limited space \implies movement in ground state

Standard model \Longrightarrow quarks with $\,v/c\,
ightarrow\,1\,$




force	range	macroscopic static force [r]	velocity
strong nuclear	nuclear	/	??
weak nuclear	nuclear	/	??
electro-dynamic gravity	infinite infinite	$\frac{1/r^2}{1/r^2}$	speed of light speed of light
inertia	??	/	? ∞ ?

force	range	macroscopic static force [r]	velocity
strong nuclear	nuclear	/	??
weak nuclear	nuclear	/	??
electro-dynamic gravity	infinite infinite	$\frac{1/r^2}{1/r^2}$	speed of light speed of light
inertia	??	/	? ∞ ?

Force between 2 neutrons - 1

What is the force between 2 neutrons?

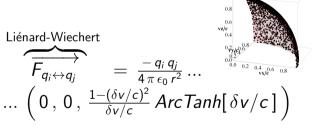
neutron

 $\neq 1$ static neutral particle

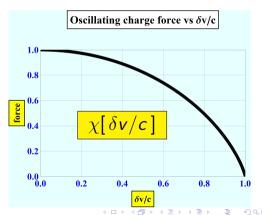
= 3 **moving** charged quarks!

Liénard-Wiechert

$$\overrightarrow{F_{n\leftrightarrow n}} = \sum_{i=1}^{3} \sum_{j=1}^{3} \qquad \overrightarrow{F_{q_i\leftrightarrow q_j}}$$


to physics .com

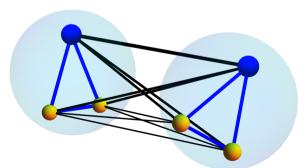
Force between 2 oscillatory moving charges

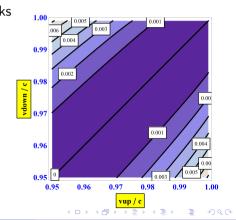

at origin and position $\vec{r} = (x, y, z), = (0, 0, r)$ and velocity: $\vec{v} = \delta v \left(Cos[\phi_v] Sin[\theta_v], Sin[\phi_v] Sin[\theta_v], Cos[\theta_v] \right)$

 $\delta v/c$: 0.99

total LW force: integrate over all velocities.

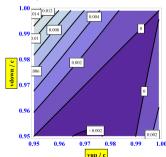
Note: $\delta v/c \rightarrow 1$ for quarks in proton/neutron

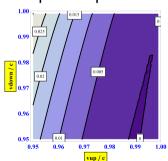



Force between 2 neutrons - 2

$$\overrightarrow{F_{n \leftrightarrow n}} = \left(\frac{-q_0^2}{4 \pi \epsilon_0 r^2}\right) \left(\frac{1}{9}\right) \left(0, 0, 4 \chi \left[\delta v_{uu}^{nn}/c\right] - 8 \chi \left[\delta v_{ud}^{nn}/c\right] + 4 \chi \left[\delta v_{dd}^{nn}/c\right]\right)$$

with $\delta v_{ud}^{nn}/c$: velocity (delta) between up and down quarks of the 2 neutrons


Forces proton-neutron & proton-proton

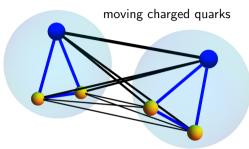

$$\overrightarrow{F_{p\leftrightarrow n}} = \left(\frac{-q_0^2}{4\pi\epsilon_0 r^2}\right) \left(\frac{1}{9}\right) \left(0, 0, 8\chi \left[\delta v_{uu}^{pn}/c\right] - 10\chi \left[\delta v_{ud}^{pn}/c\right] + 2\chi \left[\delta v_{dd}^{pn}/c\right]\right)$$

$$\overrightarrow{F_{p\leftrightarrow p}} = \left(\frac{-q_0^2}{4\pi\epsilon_0 r^2}\right) \left(\frac{1}{9}\right) \left(0, 0, 16\chi \left[\delta v_{uu}^{pp}/c\right] - 8\chi \left[\delta v_{ud}^{pp}/c\right] + \chi \left[\delta v_{dd}^{pp}/c\right]\right)$$

proton-neutron

proton-proton

Conclusions on electro-dynamical forces between 2 staic neutrons



Force properties:

STATIC

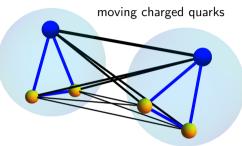
INFINITE

as function of distance: $1/r^2$

speed = speed of electro-dynamics = speed of light

complies to Liénard-Wiechert equation

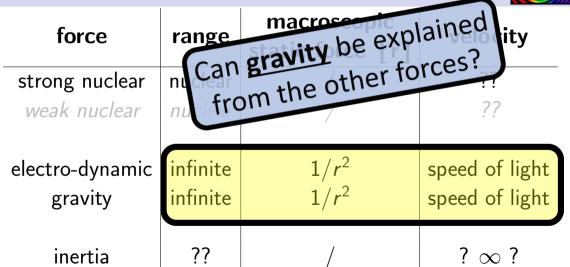
Conclusions on electro-dynamical forces between 2 staic neutrons

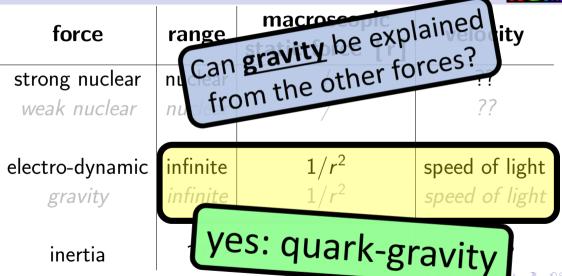

Force properties:

quark-gravity

STATIC

INFINITE

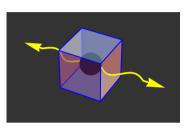

as function of distance: $1/r^2$

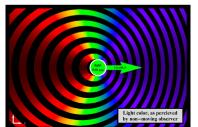


speed = speed of electro-dynamics = speed of light

complies to Liénard-Wiechert equation

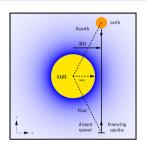
gravitational mass in motion


Gravitation is due to oscillatory charges ⇒ follows Doppler law!


Alternatively:

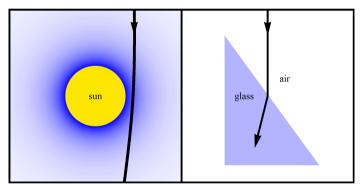
$$mass_{grav} [v_z, \theta] = E/c^2 = h\nu/c^2$$

$$= \frac{h\nu_0}{c^2} \frac{\sqrt{1 - (v_z/c)^2}}{1 + (v_z/c) \cos[\theta]}$$


$$= m_0 \frac{\sqrt{1 - (v_z/c)^2}}{1 + (v_z/c) \cos[\theta]}$$

Optical properties of quark-gravity

leading to a reduction of speed of light \implies refraction $n = c/c_{gray} > 1$


11

Shapiro time delay!

moving quarks inside nucleus

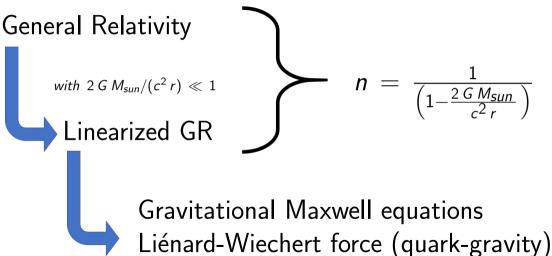
moving electrons around nucleus

influence electric fields of passing light

Refraction in Full & Linearized General Relativity

In General Relativity (GR), the photon path is given by $d s^2 = 0$. with metrics, around a central mass M:

Full General Releativity
$$ds^2 = \left(1 - \frac{2\,G\,M_{\text{sun}}}{c^2\,r}\right)c^2\,dt^2 - \left(1 - \frac{2\,G\,M_{\text{sun}}}{c^2\,r}\right)^{-1}\,dr^2 - r^2\left(d\theta^2 + Sin^2[\theta]\,d\phi^2\right)$$
 Linearized General Releativity $ds^2 = \left(1 - \frac{2GM_{\text{sun}}}{c^2r}\right)c^2dt^2 - \left(1 + \frac{2GM_{\text{sun}}}{c^2r}\right)\left(dx^2 + dy^2 + dz^2\right)$ assuming $2\,G\,M_{\text{sun}}/(c^2\,r) \ll 1$ with $r = \sqrt{x^2 + y^2 + z^2}$ we find:
$$c_{grav}^{lin\,GR} = \sqrt{\frac{dx^2 + dy^2 + dz^2}{dt^2}} = c\,\sqrt{\frac{1 - \frac{2\,G\,M_{\text{sun}}}{c^2}}{1 + \frac{2\,G\,M_{\text{sun}}}{c^2}}} \approx c\,\left(1 - \frac{2\,G\,M_{\text{sun}}}{c^2\,r}\right) = \sqrt{\frac{dr^2}{dt^2}} = c_{grav}^{full\,GR}$$


Both Full & Linearized General Relativity give as refractive index:

$$n = \frac{c}{c_{grav}^{lin}} = \frac{c}{c_{grav}^{full GR}} = \frac{1}{\left(1 - \frac{2 G M_{sun}}{c^2 r}\right)}$$

Refraction: relation General Relativity to quark-gravity

From quark-gravity to refraction

General Relativity

with
$$2 G M_{sun}/(c^2 r) \ll 1$$

Linearized GR

$$n = \frac{1}{\left(1 - \frac{2 G M_{sun}}{c^2 r}\right)}$$

Gravitational Maxwell equations Liénard-Wiechert force (quark-gravity)

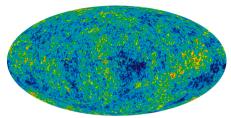
September 23, 2025

force	range	macroscopic static force [r]	velocity
strong nuclear	nuclear	/	??
weak nuclear electro-dynamic	nuclear in Can	inertia be explored the other fo	ained rces?
<i>gravity</i> inertia	in fro	/	speed of light ? ∞ ?

Approach

Suggestion by D.W. Sciama (1953):

Can inertia be explained from gravity?



Compute force on an **accelerated** test mass, as created by the gravitational Liénard-Wiechert force, of **all masses** of the universe!

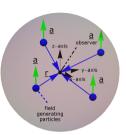
Where are all masses ? \implies model of universe

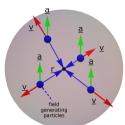
1900: Universe is static and limited in size to Milky Way.

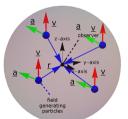
1930 : Universe is expanding, acc. Hubble law: v = Hr

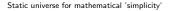
and much larger than distance to Andromeda.

2020 : Universe is expanding (accelerated) and larger than $c/H = r_{Hubble}$.


Inertia calculations for various models of universe




Determine impact of all gravitating masses on accelerated test mass


Accelerated test mass sees all masses of universe instantaneously counter-accelerated

universe → \downarrow observer \vec{v}	static	expanding
$v/c \rightarrow 0$	Α	С
$0 \le v/c < 1$	В	

Gravitational Liénard-Wiechert force, between 2 moving masses

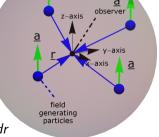
$$ec{F_g} = - \, m_{obs} \, (ec{E_g} + ec{v} * ec{B_g}) \ ec{E_g} = (\, G \, m_{part} \, / s^3) \, (\, (1 - (v/c)^2) \, (ec{r} - r ec{v}/c) \, + \, ec{r} * \, (\, (ec{r} - r ec{v}/c) * ec{a} \,) \, / c^2 \,) \ ec{B_g} = ec{r} * ec{E_g} / (r \, c)$$

$ec{\mathcal{F}_g}$	Gravitational interaction force between particle and observer (= 3D vector)
$\vec{E_g}$ $\vec{B_g}$	field vectors to arrive at the interaction force vector
\vec{r}	position of gravity field generating particle $\overrightarrow{r_{part}}$ compared to observer $\overrightarrow{r_{obs}}$, in direction particle
	to observer: $\vec{r} = \overrightarrow{r_{obs}} - \overrightarrow{r_{part}}$. For $\overrightarrow{r_{obs}} = \vec{0}$: observer in center.
\vec{v} \vec{a}	velocity $\vec{v} = d\vec{r}_{part}/dt$ and acceleration $\vec{a} = d\vec{v}/dt$ vectors of particle relative to the observer
r v	vector norm of \vec{r} and \vec{v}
С	velocity of the expansion of gravity in vacuum
s	$r - (\vec{r} \cdot \vec{v})/c$
G	Gravitational constant $pprox 6.67 imes 10^{-11} m^3 kg^{-1} s^{-2}$
mobs	gravitational mass of the static observer, located at the origin $(x, y, z) = (0, 0, 0)$
m _{part}	gravitational mass of the field generating, moving, particle
• *	represent the vector dot product and vector cross product

A: Static homogeneous Universe, accelerated: $\vec{v} = \vec{0}$, $\vec{a} \neq \vec{0}$

$$ec{Fg} = -G m_{obs} (ec{Eg} + ec{v} * ec{Bg})$$

$$= -\frac{G m_{obs} mpart}{r^3} (\vec{r} + (\vec{r} * (\vec{r} * \vec{a}))/c^2)$$

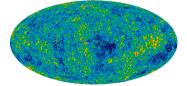

$$= -\frac{G m_{obs} mpart}{r^3} (\vec{r} + ((\vec{r} • \vec{a}) \vec{r} - r^2 \vec{a})/c^2)$$

Integrate over all masses:

$$\overrightarrow{F_g^{tot}} = \int^{all\ mass} d\ \overrightarrow{Fg}$$

Model of static universe: sphere with radius r_{max} with constant mass density ρ .

 $m_{part} \rightarrow d m_{part} =$ $\rho dx dy dz = \rho Sin[\theta] r^2 d\phi d\theta dr$



A: Impact of acceleration in static universe, $\vec{v} = \vec{0}, \vec{a} \neq \vec{0}$

$$\overrightarrow{F_g^{tot}} = m_{obs} \vec{a} (8\pi \rho G / 3 c^2) \int_0^{r_{max}} r dr$$
find r_{max} via Hubble law : $v = H r \rightarrow r_{max} = c/H$
 $\overrightarrow{F_g^{tot}} = m_{obs} \vec{a} (4\pi \rho G / 3 H^2)$

 $WMAP: flat\ space
ightarrow \Omega_{tot} = 8\pi\rho\ G/3\ H^2 = 1.02 \pm 0.02 \
ightharpoonup Friedmann\ model\ in\ General\ Relativity\ (GR)$

Newton's second law: $\vec{F} = m \vec{a}$!

A: Acceleration in static universe: INERTIA

When all particles in static universe accelerate, the resulting **gravitational** force is proportional to m_{obs} and \vec{a} in the direction of acceleration.

z-axis generating particles

The mass of the observer attempts to join the acceleration of all masses of the universe.

It resists the externally applied force: INERTIA.

Mach's principle

B: Impact of acceleration in static universe, $\vec{v} \neq \vec{0}$, $\vec{a} \neq \vec{0}$

When all particles of static universe move ($0 \le v/c < 1$), it is the observer counter-moving.

Gravitational mass vs velocity follows Doppler law:

$$d m_{part} = \rho \frac{\sqrt{1-(v_z/c)^2}}{1+(v_z/c) \cos[\theta]} \sin[\theta] r^2 d\phi d\theta dr$$

generating particles

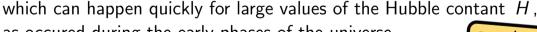
Again integrating over entire static universe, with $r_{max} = c/H$

B: Impact of acceleration in static universe, $\vec{v} \neq \vec{0}$, $\vec{a} \neq \vec{0}$

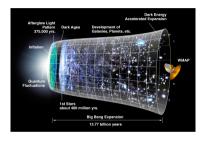
Total gravitational force on particle m_{obs} , which observes all masses of the static universe to have velocity $\vec{v} = (0, 0, v_z)$ and acceleration $\vec{a} = (a_x, a_y, a_z)$ using: $\vec{E}^* = \vec{E}/m_{part}$ and $\vec{B}^* = \vec{B}/m_{part}$ and Mathematica SW.

$$\overrightarrow{F_g^{tot}} = -m_{obs} \int_0^{c/H} \int_0^{\pi} \int_0^{2\pi} (\vec{E_g^*} + \vec{v} * \vec{B_g^*}) \rho \frac{\sqrt{1 - (v_z/c)^2}}{1 + (v_z/c) \cos[\theta]} \sin[\theta] r^2 d\phi d\theta dr
= m_{obs} \frac{4\pi \rho G}{3 H^2} \left(\frac{a_x}{\sqrt{1 - (v_z/c)^2}}, \frac{a_y}{\sqrt{1 - (v_z/c)^2}}, \frac{a_z - H v_z (1 - (v_z/c)^2)}{\sqrt{1 - (v_z/c)^2}} \right)$$

B: Impact of acceleration in static universe, $\vec{v} \neq \vec{0}$, $\vec{a} \neq \vec{0}$


This describes the relativistic momentum change,

When negletcting the new term, containing $H v_z$:


with:
$$\gamma[v_z/c] = 1/\sqrt{1 - (v_z/c)^2}$$

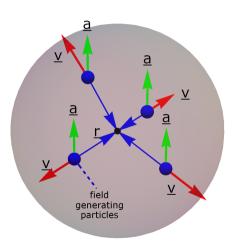
$$\overrightarrow{F_g^{tot}} = m_{obs} \frac{4\pi\rho G}{3 H^2} d(\gamma [v_z/c] \vec{v})/dt$$

The term containing $a_z - H v_z (1 - (v_z/c)^2)$ leads to an exponential increasing velocity v_z .

as occured during the early phases of the universe.

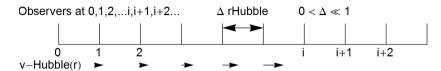
Can this term be linked to 'inflation' of the early universe?

C: Hubble expansion of universe, $\vec{a} \neq \vec{0}$


$$\pm 1930$$

Linear Hubble expansion law:

$$\vec{v} = H \vec{r} \rightarrow r_{Hubble} = c/H$$


Find relativistc form of Hubble law

No (initial) movement of observer, compared to average of 'nearby' masses ($< 0.01 \, r_{Hubble}$).

to physics ...com

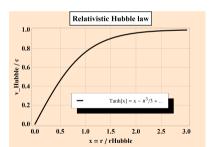
C: Hubble expansion - up to relativistic velocity

Equidistant lineup of observers, separated by distance Δr_{Hubble} ,

Each observer i sees neighbor i+1 move with a velocity:

$$v = H * \Delta r_{Hubble} = H * \Delta * c/H = \Delta c$$

To calculate velocity of observer i+2 from observer i:


Apply recursive relativistic velocity addition, starting from: $\frac{1}{2} \frac{1}{2} \frac{1}{$

$$vnew(v1, v2) = (v1 + v2)/(1 + (v1 * v2)/c^2)$$

For observer in origin this procedure can be used to obtain relativisctic velocity. Final (numerical) result:

$$v(r) = c Tanh[r/r_{Hubble}]$$

$$\rightarrow \rightarrow \rightarrow \rightarrow$$

C: Inertia in Hubble expanding universe

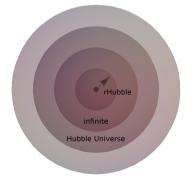
All masses of universe are accelerated, d mass $= \rho$ and move radially away from observer. Doppler impact on gravitational mass: $= \rho$

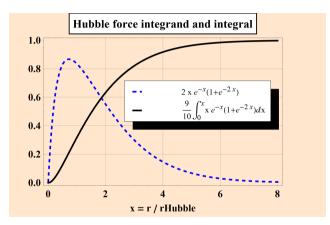
$$d \; mass =
ho \; rac{\sqrt{1 - (v_{Hubble}/c)^2}}{1 + (v_{Hubble}/c)} \; dx \; dy \; dz$$

$$=
ho \; e^{-r/r_{Hubble}} \; Sin[\theta] \; r^2 \; d\phi \; d\theta \; dr$$

Compute total inertial force of **infinite** expaning universe, with acceleration $\vec{a} = (a_x, a_y, a_z)$, using integration variable $x = r/r_{Hubble}$:

$$\overrightarrow{F_g^{tot}} = -m_{obs} \int_0^\infty \int_0^\pi \int_0^{2\pi} \left(\overrightarrow{E_g^*} + \overrightarrow{v} * \overrightarrow{B_g^*} \right) \rho \ e^{-r/r_{Hubble}} \ Sin[\theta] \ r^2 \ d\phi \ d\theta \ dr$$


$$= m_{obs} \frac{4\pi \rho G}{3H^2} \left(a_x , a_y , a_z \right) \int_0^\infty x e^{-x} \left(1 + e^{-2x} \right) dx$$


$$= m_{obs} \overrightarrow{a} \frac{40\pi \rho G}{27H^2} = m_{obs} \overrightarrow{a}$$
re-using WMAP (flat space) result: $8\pi \rho G/3H^2 = 1$ in Friedmann model of GR. For convenience, we replace $^{40/27}$ by $^{4/3}$, without change of trends.

to physics ...com

C: Inertia contribution by distant stars, in expanding universe

Inertia is mostly due to mass, at distances larger than r_{Hubble}

If universe is not infinite (implying earth is not in center), then asymmetrical mass distribution \implies asymmetrical inertial mass, but \neq Eötvös experiments on equality of gravitational and inertial mass !!

Fundamental forces in nature

force	range	macroscopic static force [r]	velocity
strong nuclear	nuclear	/	??
weak nuclear electro-dynamic gravity	in Can	inertia be explored by the other fo	rces? light speed of light
inertia	??	/	? ∞ ?

Fundamental forces in nature

force	range	macroscopic static force [r]	velocity
strong nuclear	nuclear	/	??
weak nuclear	nuclear		rined
electro-dynamic gravity	in Can	inertia be explored by the other for	rces? light
inertia	??	/ unive	gravity of erse masses

Evolution of infinite Hubble universe

$$4\pi\rho \, G/3 \, H^2 = 1$$

Study small sphere in infinite Hubble universe:

with constant total mass $M=4/3\pi\,\rho\,r^3$

using:
$$H(t) = (dr/dt)/r$$

results in:
$$(dr/dt) - \sqrt{MG/r} = 0$$

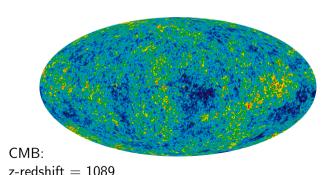
which solves as the Einstein-deSitter mass filled, expanding universe:

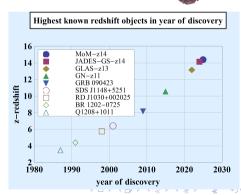
$$r(t) = r_0 (1 + \sqrt{3 \pi G \rho_0} t)^{2/3} = r_0 (1 + 3/2 H_0 t)^{2/3}$$

Red shift in infinite Hubble universe

- The infinite homogeneity implies that no net gravitational force exists when moving from one place to another.
- Therefore observed red shifts from far away galaxies are not due to gravitational effects, but originate purely from velocity-Doppler effects, due to Hubble expansion.
- For a pure motion away from the observer, the red shift z is given by:

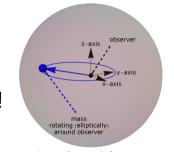
$$z = \sqrt{1 + v/c} / \sqrt{1 - v/c} - 1$$


With relativistic Hublle expansion velocity law, red shift:


$$z(r) = e^{r/r_{Hubble}} - 1$$

Red shift in infinite Hubble universe

Red shift increases exponentially with distance. Therefore, with ever improving observation techniques, we will find ever increasing red shifted objects!



Planetary orbit, low velocity (Newtonian) limit $v/c \rightarrow 0$

determined by balance of inertia and gravity which are **both** proporional to G!!

Conclusion: G not important on cosmic scale!

Orbit:
$$\omega^2 r_{mass}^3 = 3 mass H^2 / (4 \pi \rho)$$

Mach's principle: orbit co-determined by 'distant masses', with gravity as actor!

Planetary orbit, perihelion shift

Orbit calculus, starting from $\overline{F_g^{tot}}$ with v/c terms, gives proper amount of perihelion shift, but.... **OPPOSITE** sign.

Weak equivalence principle and impact of G

When only gravitational forces are involved:

$$\overrightarrow{F_g^{tot}} = \int^{all\ mass} d\ \overrightarrow{F_g} = \overrightarrow{0}$$
 proportional to m_{obs} and G , which therefore both drop out of all (orbit) equations !

 m_{obs} : weak equivalence principle inertial = gravitational mass at least: for $v/c \rightarrow 0$

G: value or sign of G is not an orbit determining parameter

to physics .com

Gravitational and inertial mass under movement

Difference between gravitational and inertial mass under movement, when condition $v/c \rightarrow 0$ is not met:

Gravitational mass =
$$m_0 \frac{\sqrt{1-(v_z/c)^2}}{1+(v_z/c) \cos[\theta]}$$

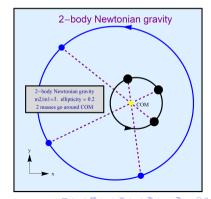
Inertial mass
$$= \frac{m_0}{\sqrt{1-(v_Z/c)^2}}$$
 and $\frac{m_0}{\sqrt{1-(v_Z/c)^2}^3}$ for acceleration perpendicular parallel to velocity

◆□▶◆□▶◆臺▶◆臺▶ 臺 ∽Qで

47 / 56

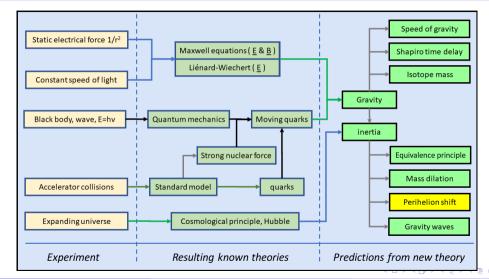
Gravity Poynting vector & waves

Gravitational Poynting vector \rightarrow total radiated (wave) energy:


$$P_{grav}^{tot} = \frac{c^2}{4\pi G} \oiint \left(\vec{E_g} * \left(\frac{\vec{r}}{rc} * \vec{E_g} \right) \right) \bullet \left(\frac{\vec{r}}{r} \right) dA = \frac{76 G m_1^2 r_\omega^4 \omega^6}{15 c^5} \left(1 + \frac{m_1}{m_2} \right)^2$$
 in full analogon of electro-dynamical Poynting vector.

In electro-dynamics:

+ and - charge can move independently ⇒ di-pole radiation


In gravity:

- 2 masses orbit a 'Common Center of Mass'
 - ⇒ di-pole radiation not possible
 - ⇒ quadrupole radiation!

to physics .com

Summary: origins of **GRAVITY** and **INERTIA**.

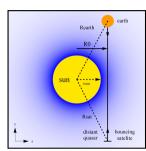
Fundamental forces in nature

force	range	macroscopic static force [r]	velocity
strong nuclear	nuclear	/	??
weak nuclear	nuclear		??
electro-dynamic gravity	infinite infinite	$\frac{1/r^2}{1/r^2}$	speed of light
inertia	??		? ∞ ?

Conclusions - 1

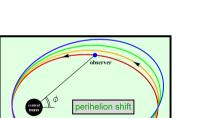
Gravity is due to the electro-dynamical impact of moving quarks in the nuclei

Inertia is due to the gravitational impact of all masses of the infinite, expanding universe


From the fundmental forces, only the **strong nuclear** and **electro-dynamical** forces remain.

Conclusions - 2

- Quark-gravity reduces the speed of light
 bending of light & Shapiro time delay.
- Einstein-deSitter expanding universe model follows from inertial condition: $4\pi\rho G/3 H^2 = 1$.
- Mass dilation is a gravitational effect.
- Universe is, was and will always be infinitely sized.
- Mach's principle (inertia is due to the 'distant stars') is made explicit.
- Gravitational constant G is **NOT** an orbit determining factor.
- Cosmological red shift is purely Doppler: $z(r) = e^{r/rHubble} 1$
- Gravity waves are quadrupoles, as masses orbit around each other.


Follow up - challenges

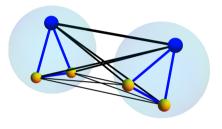
Gravitational impact of electron and anti-matter

High velocity inertial impact of expanding universe requires relativistic 3D-velocity addition,

insert into Liénard-Wiechert equations, followed by analytic integration.....

Accelerating universe & Inflation

Perihelion shift



Epilog

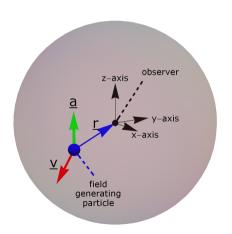
Thank you for your attention

What is the the speed of gravity and WHY?

speed of light, as gravity is electro-dynamically induced

Is gravitational constant G important for planetary trajectories?

No

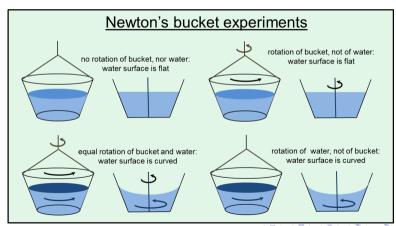


Field theory: retarded, dynamic Liénard-Wiechert

$$\frac{\vec{F}}{q_{obs}} = \vec{E} + \frac{\vec{v}}{c} * (\frac{\vec{r}}{r} * \vec{E})$$

For fundamental physics, the magnetic field is a superfluous concept!

September 23, 2025


Intro to problem definition: absolute space?

What is root cause of the change in water surface shape?

Netwon: absolute space

Mach: distant stars

